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a b s t r a c t

The core of peptide detection in tandem mass spectrometry lies in associating fragment spectra with
promising peptide candidates. We examined such detection in a synthetic combinatorial peptide library
using four scoring metrics, against all theoretical peptides, and with a varying level of probabilistic prior
knowledgedanalyzing more than a trillion peptide-spectrum matches in total. Even after adjusting for
peptide-length scoring bias, most MS/MS spectra had multiple at-least-as-good candidates as the correct
peptide, showing that the highest spectral match was not a guarantee of correctness. As a remedy, we
probabilistically integrated prior knowledge about expected cleavage behavior and expected peptide
sequences into peptide scoring, reaching and even overcoming the performance of state-of-the-art de
novo sequencing algorithms. Overall, we found that even partial and weak beliefs considerably improved
peptide detection and are, in principle, generally applicable to any detection approach. Detection of
peptides in a complete search thus often resulted in multiple admissible candidates near the maximal
score, and the use of probabilistic prior knowledge substantially improved their discrimination.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Shotgun proteomics is the leading technology for comprehen-
sive explorative analyses of proteins in complex biological samples
[1,2]. The core of peptide detection lies in the association of frag-
ment spectra with peptides, and a variety of approaches for this
purpose exist [3]. Traditionally, database search engines such as X!
Tandem, MASCOT, or MS-GFþ calculate fragment masses of data-
base peptides and match them against measured spectra [4e6].
Many research groups have recently focused on predicting frag-
ment ion intensities instead of just fragment massesdan extension
that improved peptide detection [7,8]. The best-performing spectra
prediction models such as pDeep2 and Predfull utilize deep
learning to learn complex molecular interactions during fragmen-
tation and achieve high similarities of predicted and observed
spectra [9,10]. Nonetheless, the database search has the drawback
of considering a relatively small number of peptide candidates and
a restricted set of modifications. For less restrictive analyses, open
Translational Medicine, Fac-
omouc, Czech Republic.
ruska), dusan.holub@upol.cz
search enables reference-guided detection of peptides with any
modification, including those with unknown masses [11,12].
Furthermore, its computational performance can be significantly
improved using a fragment-ion index, as in MSFragger [13].
Recently, a hybrid tag-based approach in TagGraph enabled fast
large-scale detection of peptides and their post-translational
modifications [14]. If no prior knowledge about expected se-
quences is available or its use is not desirable, peptides can be
detected using de novo sequencing [15,16]. From traditional ma-
chine learning approaches, Novor is one of the best-performing
algorithms based on decision trees, with real-time sequencing
performance [17]. Recent utilization of deep learning in DeepNovo
and pNovo 3 further improved peptide sequencing de novo [18,19].
Nevertheless, the relatively low performance of de novo sequencing
compared to the reference-guided searches makes them less useful
in typical proteomics analyses.

Herein, we utilize a complete search strategy to obtain insights
into several aspects of peptide detection, notably, the utility of prior
probabilities for peptide detection. By prior probability of a peptide,
we simply mean the probability that a randomly chosen peptide
molecule from a sample of interest is the given peptide. Although
the use of prior probabilities in ways similar to ours was investi-
gated earlier [20e24], their direct incorporation into scoring while
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considering various prior models is missing. Our study further
shows that the use of prior probabilities also substantially limits the
problem of an inflated search space [25,26], which affects database
searches with many plausible candidates, such as in proteoge-
nomics [27], or in immunopeptidomics [28,29]. Technically, our
approach matched candidate peptides against a complete
fragment-ion-indexed database [13], built separately for each pre-
cursor mass to allow fast calculation of spectral matches even for
tens of millions of candidate peptides. The analysis enabled us to
obtain the exact numbers of equal-or-better candidates, exact p-
values, and general insights into the behavior of scoring in rela-
tionship to spectral characteristics. We compared the approach
with state-of-the-art de novo sequencing algorithms and showed
that even a simple scoring metricdthe number of matching
peaksdcan perform reasonably well when integrated with
cleavage-derived prior knowledge, and further improvements fol-
lowed with a more involved scoring metric and more discrimina-
tory prior models. Finally, we showed the ability to estimate the
posterior probabilities of candidate peptides using Bayes’ Theorem,
Fig. 1. Diagram of the overall analysis. 400 peptides from a synthetic peptide library
of form LVVVGA-XX-VGK were each independently measured using LC-MS/MS. We
selected 173 peptides from the library, totaling 3 078 spectra, such that there were at
most 108 peptide candidates per spectrum and subjected them to a complete search.
For each measured MS/MS spectrum, we constructed in silico all theoretical peptides
for a given precursor mass and stored them in a database. We then predicted the
theoretical fragments and built fragment-ion indexes to enable fast calculation of
peptide-spectrum matches. Once the fragmentation data were prepared, we analyzed
the scoring behavior of four scoring metrics. The analyses included: the exact numbers
of equal-or-better candidates as the correct peptide, calculated p-values, the depen-
dence of scoring on peptide length, rates of correct detections, and overall detection
performance. Afterward, we incorporated varying levels of prior knowledge by
modeling the expected cleavage behavior and by modeling the distance of candidate
peptides to various expected reference sequences. We then calculated the posterior
probabilities of individual peptides and investigated their behavior. For comparison,
we analyzed the detection performance with commonly used search engines and de
novo sequencing algorithms. In summary, we performed a complete search of MS/MS
spectra of synthetic peptide library using multiple scoring metrics and evaluated their
performance with and without probabilistic prior knowledge.
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allowing us to select peptides with the desired rate of false
positives.

2. Results

2.1. Description of the synthetic library and the theoretical
candidate peptides

Before we delve into the analysis of peptide-spectrum matches,
let us first describe the synthetic peptide library and its relation to
the theoretical peptides. The library is based on oncogenic KRAS
peptides [30] and consists of 400 peptides of sequence pattern
LVVVGA-XX-VGK (XX for any combination of amino acids, Fig. 1,
Supplementary Table 1). As we aimed to analyze spectral matches
for all theoretical peptides, we reduced the spectra in the library to
those with a more manageable number of candidate peptides per
spectrum (Fig. 2a). In particular, we picked MS/MS spectra with at
most 108 candidates per spectrum, resulting in analyzing 3078MS/
MS spectra from 173 peptides (Fig. 2a and b, Supplementary Table 2
and 3). The total number of candidate peptides for the selected part
of the library was around two orders of magnitude less than for the
whole library (5.42 � 109 vs. 3.44 � 1011, Fig. 2c). Most of the
analyzed MS/MS spectra originated from doubly charged pre-
cursors and were of medium intensity (double-charged: 2144,
triple-charged: 934; precursor intensities Q1/Q2/Q3: 4.68 � 103/
1.15 � 104/3.60 � 104, Fig. 2d). We focused on the spectra origi-
nating from doubly-charged precursor ions to simplify the analyses
but included one analysis of triple-charged precursors for com-
parison. As the peptide library also contained some spectra unre-
lated to the peptides of interest, we considered only MS/MS spectra
with a precursor mass within five parts-per-million (ppm) of the
correct peptide to be the spectra corresponding to the peptide
(Fig. 2e). The multiplicity of the spectra also allowed us to study the
detection for varying precursor intensities, with 17.8 fragment
spectra per peptide on average. In peptide-spectrum matching, we
used the fragment tolerance of 0.3 on the m/z scale in accordance
with the distribution of fragment mass differences (Fig. 2f). In
summary, we selected a more computationally manageable part of
the peptide library and analyzed it relative to all theoretical pep-
tides and various prior probability modelsdan analysis that con-
sisted of evaluating more than a trillion peptide-spectrum matches
in total.

2.2. Most spectra had other at-least-as-good candidates as the
correct peptide

The analysis of all theoretical peptides for a spectrum enabled us
to obtain the exact numbers of at-least-as-good candidates as the
correct peptide (Fig. 3a). Overall, we performed the analyses for
four spectral match metrics computable using fragment-ion index
[13], allowing for their fast calculation: the number of matching
fragments (NMP); the rank-normalized sum of matching intensities
(RPSM); the Hyperscore (HSPSM); and fragment frequency
(FFPSM), a scoring metric we propose. NMP is a simple metric with
certain desirable modeling properties, and RPSM is its extension
that integrates fragment intensities into detection. Hyperscore is a
metric originally introduced in X!Tandem [5] and its variation is in
use in the open-search algorithm MSFragger [13]. FFPSM utilizes a
priori distribution of expected fragments of all candidate peptides
to suppress noise peaks, making it directly useable in a complete
search (Methods). The numbers of candidates that matched the
fragment ion spectra at least as well as the correct peptides were
generally higher than one for each metric, indicating limited ability
to detect uniquely the correct peptide (medians: 6 for NMP, 6 for
RPSM, 4 for HSPSM, and 3 for FFPSM; double-charged precursors,
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Supplementary Table 4). Note that rephrasing the previous in terms
of p-values, we observed that the matches of the correct peptides
were generally highly significant (medians of non-adjusted p-
values: 3.95 � 10�7 for NMP, 3.67 � 10�7 for RPSM, 2.88 � 10�7 for
HSPSM, and 2.34 � 10�7 for FFPSM). Even though the behavior was
similar, FFPSM outperformed the remaining metrics in terms of
equal-or-better matches (e.g., Wilcoxon W ¼ 234.00, p ¼ 1.11 �
10�12, n ¼ 173 for HSPSM). Thus, although the analysis revealed
other at-least-as-good candidates as the correct peptide for most
spectra, scoring metrics exhibited significant differences in their
behavior.

The number of at-least-good-candidates has a correspondence
to E-values that are commonly reported by database search engines
such as X!Tandem [4], Comet [31], or MS-GFþ [6]. E-value of a
candidate peptide with score s refers to the expected number of
peptides with score at-least-as-good as s, for a given size of the
database used in the search. Note, however, that even very low E-
Values do not guarantee the correctness of detection. To illustrate
the point, we searched the peptide library against a database of
peptides of pattern VLVVGAeeVGK (instead of LVVVGAeeVGK; no
Isoleucines, 361 peptides). The peptide-spectrum matches had
generally very low E-Values (median: 2.79 � 10�7 for MS-GFþ),
yet all of them were incorrect. This was because all candidate
peptides were similar to the correct peptidesdtheir matches were
unlikely due to chance; however, that did not imply their correct-
ness. Such a potentially misleading situation cannot happen in a
complete searchdthere, the E-Value for a candidate peptide p
equals the number of at-least-as-good candidates as p. Note that
even if just one additional at-least-as-good candidate q exists, there
is no preference to choose p over q unless there are other criteria or
prior knowledge. Let us focus on the prior knowledge and consider
two situations. First, suppose we know nothing about the sample;
then, it is reasonable to treat all peptides as equally likely a priori. In
such case, the other at-least-as-good candidate q is a priori as likely
as p, and thus the posterior probability of p is at most one-half-
doften too low in practice. Now suppose we know that the sample
is a trypsinized human sample. Then, the chance that some refer-
ence human tryptic peptide (e.g., p ¼ LVVVGAGGVGK) is in the
sample is many orders of magnitude higher than, say, the same
peptide with two of its residues exchanged (e.g.,
q ¼ VLVVGAGGVGK). Thus even if such other at-least-as-good
candidate q exists, the posterior probability of p might be still
high because q is unlikely a priori; if so, the posterior probability of
q must be low. The relevance of existence of other at-least-as-good
candidates thus depends on their prior probabilities. To summarize,
the E-values in incomplete searches might be potentially
misleading if there are non-searched peptides that are similar to
the peptides in the search database, and which are not of suffi-
ciently low prior probability.

2.3. B-ion ladders were more often matched at random compared
to y-ion ladders

To provide an additional frame of reference to the scoring
metrics analyzed, we also analyzed the detection by considering
just theoretical b- and y-ion ladders (BNMP and YNMP, respec-
tively). The detection based on either type of fragment ions was
substantially worse compared to NMP, as indicated by the number
of at-least-as-good candidates for the correct peptide (medians:
268 for BNMP, 28 for YNMP, and 6 for NMP). Note that matching
against the b-ion ladders was less informative as the number of
equal-or-better candidates was around one order of magnitude
higher than for y-ion ladders (Wilcoxon W ¼ 574.00, p ¼ 7.74 �
10�25, n ¼ 173). Similarly, the p-values for the correct peptides for
BNMPwere substantially higher (medians: 1.81� 10�5 for BNMP vs.
3

1.70 � 10�6 for YNMP). In accordance, the b-ion ladders were more
oftenmatched at random compared to y-ion ladders (median of the
average number of matching peaks per library peptide: 1.44 for b-
ions vs. 0.80 for y-ions, Wilcoxon W ¼ 5076.00, p < 10�48, n ¼ 2
144). Therefore, a unit increase in the b-ion match was less relevant
than a corresponding increase in the y-ion match.

Note that although the y-ions are generally more easily
observed for tryptic peptides [32], the observed behavior resulted
from a different phenomenon. In particular, the average number of
matching b-ions for correct peptides was just slightly lower than
the number of matching y-ions (7.76 vs. 7.84, resp.). On the other
hand, the total number of matching peaks summed over all
candidate peptides was almost twice as high over b-ion ladders if
compared to y-ion ladders (1.47�/1.77�/2.12�, n ¼ 2 144). Such b-
to-y total-number-of-matching-peaks ratios also strongly corre-
lated with the b-to-y ratios of at-least-as-good candidates over
each spectrum (Spearman’s r ¼ 0.88, p < 10�48, n ¼ 2 144; medians
of ratios taken over each score level). The experimental fragments
thus matched b-ion ladders more often and for more diverse
candidate peptides, resulting in their lower ability to discriminate
correct peptides.

2.4. A simple adjustment of peptide-length scoring bias increased
the correct detections for the analyzed metrics by up to 13.2%

A close-up inspection of the tail of peptide matches distribution
had often revealed peptides that were longer than the correct
peptide (e.g., Fig. 5e). As longer peptides have more predicted
fragments, scoring metrics based on matching fragments tend to
give them an unfair advantage and such a bias impairs peptide
detection [33]. Some search engines address the scoring bias (e.g.,
Comet [31] or MaxQuant [34]), while others do not, or at least not
directly (e.g., X!Tandem [4] or MSFragger [13]). Still, when
employing a target-decoy search strategy [35], the peptide length
can be used as a feature to discriminate between target and decoy
peptides (e.g., as in Percolator [36]), which performs a basic level of
normalization. The target-decoy strategy is, however, not always
applicabledparticularly in a complete search because the target
and decoy peptides for each spectrum are the same. We thus
investigated the effect of length normalization on the detection of
peptides in a complete search.

To examine this behavior, we first calculated correlations be-
tween the scores and peptide lengths (Fig. 3b). In general, the
scores for each scoring metric had shown dependence on peptide
length (medians of Spearman’s r correlations: 0.138 for NMP, 0.124
for RPSM, 0.141 for HSPSM, and 0.183 for FFPSM). For instance, the
average number of matching peaks for peptides of length nine was
1.75, compared to 2.10 for peptides with additional residue. Visu-
ally, we depicted average scores assigned by HSPSM, a metric
similar to that in MSFragger [13], showing a clear yet mild growth
of scores with peptide length (Fig. 3c). Afterward, we devised a
simple adjustment, which subtracts the average score from the
scores of candidate peptides of a given length (Methods). The
adjustment suppressed the correlation of scores and peptide
lengths (medians of correlations: 0.044 for NMP+, �0.027 for
RPSM+, �0.041 for HSPSM+, and �0.032 for FFPSM+; Fig. 3b).
Finally, we evaluated the detection performance of the length-
adjusted metrics and found that they outperformed their non-
adjusted counterparts. For instance, each length-adjusted metric
outperformed the non-adjusted one in terms of equal-or-better
candidates (e.g., 2/6/22 vs. 2/4/13 for NMP, Supplementary
Table 5). As it often happened that the correct peptide had a
maximal score, we focused on a more strict criteriumdto identify
the correct peptide uniquely, meaning that all incorrect peptides
had a score strictly lower than the correct peptide. If the scoring



Fig. 2. Description of the synthetic peptide library. (a) The heatmap shows 173 peptides selected for the complete search analysis (blue dots). The peptides were selected such
that the total number of peptide-spectrum matches per spectrumwas at most 108 (see b). Note that we did not consider Isoleucines in the analysis; otherwise, the analyzed scoring
metrics would never be able to identify uniquely and correctly any peptide. Further, we considered only carbamidomethylated cysteines (letter Z). (b) The distribution of the
number of candidates for each peptide from the library. We selected only a subset of the library to simplify the analysis and suppress great demands on computational resources,
mostly memory. Analyzing the full library would require around 100 TB of storage. Note that for each MS/MS spectrum of a peptide, we considered the same candidates (see c). (c)
We considered all theoretical peptides within 10 parts-per-million (ppm) of the correct peptide’s mass as theoretical candidates for scoring. Overall, the total number of candidates
increased only mildly with the maximum allowed precursor tolerance. (d)Most spectra were of medium intensity, allowing us to study the detection in typical scenarios (median of
precursor intensity: 1.15 � 104). (e) The distribution depicts the relative precursor mass difference of calculated and observed masses. We used each MS/MS spectrum from the
peptide library within a precursor tolerance of five ppm of the correct peptide as an MS/MS spectrum of the correct peptide. (f) The plot depicts the distribution of fragment mass
differences. We matched the predicted fragment ions to the closest fragment in MS/MS spectrum and showed such distribution within 0.5 on m/z scale, selecting 0.3 as a fragment
mass tolerance.
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metric detected the peptide correctly and uniquely, we referred to
such a situation as a correct interpretation of a spectrum. The total
increase in terms of correctly interpreted spectra reached 13.2% for
NMP+, 9.3% for RPSM+, 10.7% for HSPSM+, and 3.2% for FFPSM+. The
length-based adjustment of scoring metrics thus moderately
improved peptide detection performance.

2.5. A spectral match approach rarely interpreted spectra correctly
in a complete search

To examine the ability to detect the correct peptide sequence,
we analyzed the detection performance based on spectral charac-
teristics. First, we started with the analysis of 2144 spectra of
doubly charged precursor ions. Overall, the rates of correctly
interpreted spectra were rather low for each scoring metric
(Fig. 3d). Considering the worst and the best scoring metrics, NMP
interpreted 13.4% of spectra correctly, while the FFPSM+ 21.1% of
spectra (57.3% more). The ability to correctly interpret spectra
increased with the precursor intensity for all scoring metrics (e.g.,
Spearman’s r ¼ 0.30, p ¼ 7.78 � 10�46, n ¼ 2 144 for NMP). For
instance, restricting the analysis to precursors of intensity at least
5 � 104 resulted in 30.2% correctly interpreted spectra for NMP, and
49.6% for FFPSM+. The scoring metrics thus had only limited ability
4

to interpret the spectra correctly but this ability increased with the
intensity of precursors.

For comparison, we have included complete analyses of double-
charged precursor spectra performed using three popular search
engines: MSFragger, Comet, and MS-GFþ (Methods). MSFragger
resulted in 17.2% correct detections, similar to the metric HSPSM
that aimed to mimic its behavior (17.4%). Note that the length-
adjusted HSPSM+ improved the detection to 19.3%, and the
adjustment would most likely benefit MSFragger in a similar way.
Comet reached 21.3%, similar to that of FFPSM+ (21.1%). Finally, the
highest performance was achieved by MS-GFþ, reaching 23.9% of
correctly interpreted spectra, and thus outperforming other scoring
metrics and search engines in this respect.

Finally, we analyzed 934 triple-charged precursor spectra from
66 peptides. Overall, if multiply-charged ions were not allowed in
matching, there were no spectra interpreted correctly by any of the
scoringmetrics. Similarly, neither Comet nor MSFragger was able to
interpret any spectrum correctly (MS-GFþ did not allow restricting
the maximal fragment charge). If we allowed multiply-charged
fragment ions, the performance improved but very mildly (0.4%
of correct and unique detections for NMP, 0.2% for MS-GFþ, 0.3% for
Comet, and 0.2% for MSFragger). The complete search of triple-
charged spectra had thus very rarely interpreted the spectrum



Fig. 3. Behavior and performance of scoring metrics. (a) The numbers of candidates that were score-wise at least as good as the correct peptide were generally higher than one
for each scoring metric. The boxplot depicts the medians of the number of such candidates per peptide from the library (over all its spectra). (b) The scores of candidate peptides
correlated with their lengths, thus showing a bias towards longer peptides. Substracting the average score per length suppressed the length effect (right side, ”Adjusted”). The
boxplot shows the averages of Spearman’s r correlations per peptide from the library (over all its spectra). (c) Depiction of average scores calculated using HSPSM and HSPSM+.
Although the average scores increased using HSPSM, they were close to zero in HSPSM+. The boxplot shows the average scores per peptide from the library (over all its spectra). (d)
The ability to detect the correct peptide uniquely increased with the intensity of precursor ions. For instance, for the 10% of spectra with the most intense precursors, the best-
performing FFPSM+ interpreted correctly and uniquely almost double the spectra compared to NMP (55.9% vs. 28.5%, 1.96�). The lines with lower opacity show the behavior of
metrics without the length adjustment.
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correctly for the analyzed dataset, providing room for further
investigations.
2.6. Probabilistic incorporation of expected cleavage behavior
improved complete search performance

To investigate the effect of expected cleavage behavior on
detection performance, we integrated spectral matches with
cleavage-derived prior probabilities of peptides. Foremost, note
that the majority of theoretical candidates did not conform to the
cleavage of trypsin at C-terminal (median: 83.5%, Fig. 4a). Similarly,
most of the theoretical candidates had at least one missed cleavage
(overall: 91.4%, Fig. 4b). Naturally, one would expect that incorpo-
ration of these characteristics into peptide detection will improve
its performance. Note that the number of missed cleavages and
conformance to C-term specificity can also be integrated into
peptide detectionwhen employing target-decoy strategy [35]; this,
however, remains inapplicable for complete search (as in the case
of peptide-length normalization).

We thus integrated the expected cleavage behavior by assigning
different prior probabilities to peptides based on their conformance
5

to cleavage. In practice, we integrated the NMP and FFPSM+metrics
with prior probabilities of peptides and derived the posterior
probabilities using Bayes’ Theorem (Fig. 4c and d; Supplementary
Tables 7, 11e13; Methods). Note that even reformulation of the
metrics into their probabilistic form substantially increased the
areas under the precision-recall curves even for the uniform prior
(AUC: 0.162 / 0.229 for NMPp, 0.251 / 0.305 for FFPSM+

P). The
result shows that filtering using probabilities instead of the raw
scores generally allowed selecting more candidates at a given false-
positive rate. The use of prior distribution based on the number of
missed cleavages further improved the detection (AUC:

0.229 / 0.265 for NMPp, 0.305 / 0.348 for FFPSM+
P; correctly

interpreted spectra: 13.4% / 16.5% for NMP, 21.1% / 25.3% for
FFPSM+

P; multiplication of prior probability by 0.1 with each
missed cleavage). Similarly, multiplying the prior probabilities by
0.001 for peptides with non-specific cleavage at C-terminal again
improved the performance to an even greater degree (AUC:
0.229 / 0.289 for NMPp, 0.305 / 0.375 for FFPSM+

P; correctly
interpreted spectra: 13.4% / 17.5% for NMP, 21.1% / 26.3% for
FFPSM+

P). Reformulation of scoring into probabilistic settings and
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incorporation of expected cleavage behavior thus substantially
improved peptide detection performance.

As we analyzed the behavior of all theoretical peptides, we also
compared the performance of spectral match metrics to de novo
sequencing algorithms (Fig. 4e, Supplementary Table 8). The
highest performance was reached by Novor (AUC: 0.349), followed
by DeepNovo (AUC: 0.298), and finally PepNovo (AUC: 0.281). It
was somewhat surprising that the use of the probabilistic version of
simple FFPSM+ with C-term cleavage model outperformed these
algorithms (AUC: 0.375). Note that the use of the C-term modeling
was justified in the comparison because all these algorithms were
run with trypsin as a protease, thereby providing advantages to
tryptic peptides. On the other hand, these algorithms could also be
directly trained when appropriate data are available and are thus
likely to reach higher performance in such circumstances. That
being said, the simple scoring metrics are almost without param-
eters, so their potentially high performance provides room for
future investigations as they are likely to be of similar performance
across datasets. Detection using FFPSM+ thus reached better per-
formance than the complex peptide-scoring de novo sequencing
algorithms on this synthetic combinatorial peptide library dataset.
Fig. 4. Probabilistic integration of cleavage into peptide detection. (a) The proportion o
one-sixth of all theoretical candidates (median: 16.5%). (b)Most of the theoretical candidates
metric into its probabilistic version NMPp improved the detection performance by allowing
C-term specificity further improved detection performance. The numbers in parentheses s
cleavage and multiplication by 0.1 for each missed cleavage). (d) Similarly as in c, the pro
improvements followed with the probabilistic modeling of cleavage behavior. (e) The perfor
algorithms, especially when using the modeling of cleavage (see b and c).

6

2.7. Better-matching incorrect peptides had a high editing distance
to the correct peptide

To get a closer look into the behavior of scoring metrics, we
depicted spectral match distributions for a particular MS/MS
spectrum (Fig. 5aed, Supplementary Table 9). Although the details
of each distribution differed, all of them had shown similar trends.
In this example, each scoring metric assigned a near-maximal score
to the correct peptide (17/18 for NMP, 1464/1523 for RPSM, 30.70/
33.03 for HSPSM, and 142.50/149.38 for FFPSM). In accordance, a
few strictly better matching candidates were visible at the right tail
of the distribution (4 for NMP, 2 for RPSM, 8 for HSPSM, and 4 for
FFPSM). The spectral matches of the correct peptide were thus very
high for all metrics; however, a couple of candidates still matched
the spectrum better.

Even though the scoring metrics were generally inadept in
detecting the correct sequence uniquely, other plausible candidates
were sequence-wise far from the correct sequence. The Fig. 5e
shows candidate sequences, scores, and editing distances to the
correct peptide (DSeq) for the analyzed spectrum. The better
matching candidates were of the following median DSeq: 3.5 for
NMP, 3.0 for RPSM, 4.0 for HSPSM, and 3.5 for FFPSM. The table thus
illustrates that even though some candidates had a slightly better
spectral match, their sequences might be unlikely, e.g., relative to
f theoretical candidates with C-terminal lysine (K) or arginine (R) represented around
had at least one missed cleavage (overall proportion: 91.4%). (c) Reformulating the NMP
to select peptides at much higher precision. The incorporation of missed cleavages and
ignify the decrease in prior probabilities of peptides (0.001 in C-term for non-specific
babilistic version of FFPSM+ outperformed its non-probabilistic counterpart. Further
mance of probabilistic versions of scoring metrics was on par with de novo sequencing



Fig. 5. Distribution of peptide-spectrum matches and editing distances to the correct sequence. (aed) The distributions show peptide-spectrum matches for all theoretical
candidates for a particular spectrum. The spectrum was randomly selected from spectra that have a near-maximal score in each metric. (e) The table details the peptide-spectrum
matches near the maximal score. The DSeq shows the editing distance of the candidate sequence to the correct sequence LVVVGAQGVGK (see also f). (f) The distribution of editing
distances to the correct sequence LVVVGAQGVGK for all candidate peptides. Note that no peptide has DSeq of 1dif a sequence was edited by one, it would not fit into the tight
precursor mass tolerance window. Nevertheless, that would change if we also considered Isoleucines in our analysis (e.g., the mass of a peptide after editing L / I remains the
same). (g) The scores of peptides increased as the sequence was getting closer to the correct peptide. However, the scores were still generally far from the score of the correct
sequence.
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expected reference sequences. In general, only a handful of candi-
dates were sequence-wise close to the correct peptide (Fig. 5f). In
this example, 99.9951% of candidates were of editing distance
larger than 3, far from the correct sequence. On the other hand,
peptides close to the correct sequence were of substantially higher
scores yet generally had much lower scores than the correct pep-
tide (Fig. 5g). For instance, peptides of distance 2 had a score of
95.53 on average, far from the score of the correct sequence
(142.50, FFPSM). In summary, the results thus suggested that
modeling the candidates’ distance, if appropriate at given circum-
stances, should significantly improve peptide detection.

2.8. Modeling of distance to the expected reference sequence
dramatically improved peptide detection performance

To examine the relevance of a priori knowledge of correct pep-
tides’ sequence pattern, we analyzed the detection performance for
various distance-based prior models. We modeled the prior prob-
abilities using a distance factor (DF)da number in the (0, 1D interval
that signifies the multiplicative decrease in prior probability with a
unit increase in editing distance to the reference sequence. Note
that the posterior probabilities assigned to the correct peptides
without utilizing prior knowledge were generally low (0.01/0.11/
0.43, double-charged precursors, NMPp, Fig. 6a, Supplementary
Table 10). The calculated probabilities indicated that the unaided
detection of peptides in complete searches using NMPp metric
would not be sensitive enough in practice. However, using the
distance factor of just 0.1 substantially raised the probabilities to
0.42/0.86/0.98 (reference sequence: LVVVGAeeVGK). In
7

accordance, the rates of correctly interpreted spectra increased
from 13.5% to 72.2%. Lower distance factors further increased the
posterior probabilities (i.e., 0.76/0.97/1.00 for DF ¼ 0.01, and 0.92/
0.99/1.00 for DF ¼ 0.001). Therefore, putting even mild importance
on the distance of peptides to the reference sequence significantly
raised the posterior probabilities for correct peptides.

To evaluate the overall detection performance, we compared the
total number of interpreted spectra at a particular false positive rate
(Fig. 6b). Overall, the use of even a small degree of prior knowledge
significantly improved detection. For instance, considering preci-
sion of 90.0% resulted in 13.5% recall without prior knowledge, but
increased to 69.2% for DF ¼ 0.1. Similarly, the areas under the
precision-recall curves were much higher when utilizing prior
knowledge (e.g., AUC¼ 0.741 for DF¼ 0.1, compared to AUC¼ 0.229
without using prior knowledge, NMPp). In summary, the detection
was largely improved even with high distance factors if the prior
probabilities were based on the distance to the expected reference
sequence.

Afterward, we analyzed detection behavior for variably incom-
plete reference sequences (Fig. 6c; Supplementary Table 10e14).
The highest posterior probabilities were assigned to the correct
peptides when the expected reference sequence corresponded
directly to the pattern of the peptides in the library (Pr¼ 0.42/0.86/
0.98, LVVVGAeeVGK, DF ¼ 0.1). The use of the actual human
reference sequence LVVVGAGGVGK resulted in moderately
decreased probabilities, although it corresponded better to a real-
world situation (Pr ¼ 0.15/0.73/0.97, DF ¼ 0.1). Overall, the poste-
rior probabilities decreased with the number of missing amino
acids around the variable part of the sequence (medians: 0.50, 0.45,
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and 0.23 for 4, 6, and 8missing amino acids, resp.; DF¼ 0.1). Finally,
the posterior probabilities were the lowest when nothing except
the length of the sequencewas expected (median: 0.15, DF¼ 0.1). In
summary, even mediocre completeness of the expected reference
sequence substantially improved peptide detection compared to no
prior knowledge.
2.9. Posterior probabilities were close to their desired behavior

Next, we analyzed the behavior of posterior probabilities to see
if they follow their intended behavior. First, we chose the best
candidates for each spectrum and compared the sum of their
probabilities to the number of correct detections for various dis-
tance factors (Fig. 6d, Supplementary Table 7). Although the
behavior for DF � 0.1 followed the desired behavior closely, it had
shown a particular phenomenon: an underestimation of probabil-
ities for high distance factors (i.e., 0.5 and 0.9). The reason is that
when multiple peptides have the same peptide-spectrum match,
ratios of their posterior probabilities are equal to the ratios of their
prior probabilities in our model. In these circumstances, the cor-
respondence between the prior model and the data becomes
Fig. 6. Integration of spectral matches with expected peptide sequences. (a) Lack of pr
(median of Pr ¼ 0.11). Note that no prior knowledge corresponds to the distance factor (DF)
other hand, using low DF ¼ 0.001 assigned very high probabilities to the correct peptides (m
raised the detection performance (e.g., from AUC ¼ 0.229 for no prior knowledge to AUC ¼
detection performance. (c) The use of partially incomplete expected reference sequences sti
of LVVVeeeeeeK resulted in mediocre probabilities at a mild distance factor (Pr ¼ 0.10/0.45
the total number of correctly detected peptides (individual points in the plot represent diffe
situationwhen multiple candidate peptides have the same match, putting more relevance on
distance factors (DF > 0.1). Note that the behavior for LVVVGAGGVGK prior resulted in a sligh
reason is that the prior does not properly correspond to the peptide library structure and th
The probabilities of the best candidates analyzed for each of the 173 peptides separately ha
posterior probabilities of all candidates were generally close to their desired behavior, indi
induced underestimation).
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important to obtain accurate posterior probabilities. For illustra-
tion, suppose there are two candidate peptides pa and pb, both of a
maximal score. Let pa be of distance 2 to the pattern
LVVVGAeeVGK, pb be of distance 3, and suppose that pa is the
correct peptide. At DF ¼ 0.9, the posterior probability of pb will be
0.9� that of pa, thus just slightly lower than of pa. For further
simplicity, suppose pa and pb are the only candidates for the
analyzed spectrum. As a result, pa will have a posterior probability
slightly above 0.5, and pb slightly below 0.5 (i.e., 0.526 vs. 0.474,
respectively). Because we are interested in the best candidates per
spectrum, we will always select the one with the slightly higher
probability. As all correct peptides are of distance 2 to the pattern
LVVVGAeeVGK, peptides of the same match but of higher distance
will have just slightly lower posterior probabilities than the correct
peptides. We refer to such situations as prior-induced underesti-
mation as they result from the lack of sufficient correspondence
between the prior and the analyzed library at high distance factors.
On the other hand, such situations do not exist at DF ¼ 1, because
these small numerical differences disappeardboth peptides will
have a probability of 0.5, and there would be thus no numerical
advantage for the selection of the best candidate. The
ior knowledge resulted in low posterior probabilities assigned to the correct peptides
of 1dno penalization with an increase in distance to the prior pattern (DSeq). On the
edian of Pr ¼ 0.986). (b) The use of prior knowledge of limited importance substantially
0.741 for DF ¼ 0.1). Strengthening the relevance of prior knowledge further improved
ll improved the peptide detection. For instance, the expected peptide sequence pattern
/0.89, DF ¼ 0.1). (d) The expected number of correct detections corresponded well with
rent partial structures as seen in c). The prior-induced underestimation is a result of a
prior probabilities. These, in turn, did not correspond well to the peptide library at high
t overestimation of the probabilities at sufficiently low distance factors (diamonds). The
us eventually starts forcing the incorrect behavior (at low enough distance factors). (e)
ve shown a consistent behavior (see also d for prior-induced underestimation). (f) The
cating their correct estimation across a wide probabilistic range (see also d for prior-
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underestimation of probabilities thus resulted from an elevated
dependence on prior model, which did not correspondwell enough
to the peptide library at high distance factors.

With the previous in mind and restricting the analysis to
DF� 0.1, the sums of probabilities were close to the actual numbers
of correct detections (y ¼ 0.984�, R2 ¼ 99.76%, ordinary least
squares regression). Afterward, we investigated a more localized
behavior of the probabilities. First, we studied the behavior for each
of the library peptides separately to see if there are systematic
deviations from the desired behavior (Fig. 6e, LVVVGAeeVGK,
Supplementary Table 14). Except for the prior-induced underesti-
mation for high distance factors, the differences in the average
probabilities of the best candidates and the average rates of correct
detections were close to zero (e.g., medians: 0.007 for the uniform
prior, and �0.029 for DF ¼ 0.1). The results thus suggested that the
calculated probabilities were also reliable on a more individual
basis. Finally, we examined the average behavior of probabilities for
all candidates (Fig. 6f, Supplementary Table 14). Except for the
prior-induced underestimation, the posterior probabilities were
close to the average rates of correct detections, indicating their
accurate estimation over the whole probabilistic range. Neverthe-
less, we observed a prior-induced underestimation resulting from a
more complex scenario at DF ¼ 0.1, showing the relative relevance
of having a proper correspondence between the prior probabilities
and the analyzed peptides. The posterior probabilities thus showed
appropriate behavior for a uniform prior and for low distance fac-
tors, with potential complications caused by equal peptide-
spectrum matches and corresponding elevated dependence on a
correct model of prior probabilities. In summary, a reasonable
behavior of posterior probabilities for a multitude of settings
indicated the possibility to select peptides at a particular rate of
false positives in a complete search integrated with prior
probabilities.

3. Discussion

Our study examined the complete search strategy and the
importance of scoring metrics and probabilistic prior knowledge
for peptide detection. Although the complete search is feasible only
for precursors of low-to-mediummass, our analysis offered various
insights into the peptide scoring, such as the dependence of scoring
on peptide length (Fig. 3b and c), and showed a clear utility of
peptide prior probabilities in peptide detection (Fig. 4c and d). From
a theoretical perspective, a complete search ensures that no
candidate is missed and thus allows normalizing probabilities of
candidates to sum to one. As many viable candidates usually reside
around the maximal score, the prior knowledge can help discrim-
inate between themdthe highest match is typically not a sufficient
guarantee of correctness (Fig. 5e). Furthermore, even though the
search space of candidates was quite large in our analy-
sesdmaximal with 9.88 � 107 candidatesdthe use of discrimina-
tive prior probabilities anyway resulted in high posterior
probabilities for correct peptides (Fig. 6a). The use of prior proba-
bilities thus helped leverage the problem of large search spaces
commonly affecting large-scale proteomics analyses [25e29].
Although the utility of a complete search is limited in practice, most
information for calculating accurate posterior probabilities resides
at the right tail of the peptide-spectrum match distribution. As a
result, the guaranteed availability of just those candidates might be
enough to reap most of the benefits of a complete search and make
the analysis practical, an important step for further investigation.
Our analysis thus aimed to show the relevance of prior probabilities
in detection, which also allowed us to obtain accurate posterior
probabilities even when considering large search spaces.

The biggest limitation of our study is the analysis of peptides
9

from a single combinatorial peptide librarydthe analyzed peptides
were all of the same sequence pattern. For instance, even though

FFPSM+
P outperformed other de novo sequencing algorithms on this

dataset, its general performance remains to be further evaluated. As
FFPSM+

P requires the a priori distribution of fragment masses for all
theoretical peptides at a given precursor mass range, making such
comparison is harder in practice outside of a complete search
strategy. Nevertheless, we consider this study as an illustration of
the utility of a complete search for the development of peptide
detection methods. Although we considered a prior model based
on the distance to a single reference sequence which was of a
limited utility (Fig. 6a and c), a similar prior based on the distance to
any reference protein sequence is likely to allow reference-guided
detection in a typical shotgun proteomics experiment. Although
investigations along these lines were done earlier [20,21], direct
integration of prior probabilities based on the distance to the
reference sequence(s) into scoring is, to our best knowledge,
missing. Notably, modeling of prior probabilities concerns the
behavior of peptides, and thus such probabilities can be in principle
incorporated into any detection method. The use of prior proba-
bilities based on the expected presence of peptides in the sample
will be thus most likely universally beneficial.

We did not consider Isoleucines in the analysis to allow for
correctly interpreted spectra based purely on the spectral match.
Otherwise, there will always be an additional match of an equal
score as the correct peptide because the LVVVGA-XX-VGK pattern
contains Leucine (e.g., if the correct peptide was LVVVGAGGVGK,
the candidate IVVVGAGGVGK would have the same score in the
analyzed metrics). Nevertheless, we would still obtain correctly
interpreted spectra even if considering Isoleucinesdif we utilized
probabilistic prior knowledge. For instance, the sequence L /

IVVVGAGGVGK is of distance one and thus less likely, providing
discrimination between the sequences. Thus, utilizing probabilistic
prior knowledge would also enable us to distinguish between
Leucines and Isoleucines based on their prior probabilities, and in
effect, posterior probabilities.

The complete search strategy can be thus considered as a well-
defined environment for the development of peptide detection
methods. The focus on complete search also allowed us to tempo-
rarily disregard various computational aspects of the analysis and
study the pure potential of peptide-scoring metrics. The problems
associated with large search spaces were largely suppressed by
utilizing discriminative prior models, allowing detection against
millions of candidates per spectrum. Integration of complete search
and probabilistic prior knowledge thus allowed reliable peptide
detection in a low-precursor-mass combinatorial peptide library,
even when considering all theoretical peptides.
4. Methods

4.1. Synthetic peptide library

400 unpurified peptides of sequence LVVVGA-XX-VGK (XX be-
ing any combination of two coded amino acids) were ordered from
JPT Peptide Technologies (Berlin, Germany). Peptides were
analyzed individually on an LTQ Orbitrap Elite mass spectrometer
(Thermo Fisher Scientific, Bremen, Germany) coupled to a Dionex
UltiMate 3000 RSLCnano system (Dionex, Olten, Switzerland) via a
Nanospray Flex Ion Source (Thermo Fisher Scientific, Bremen,
Germany). For each LC-MS/MS run, 1 mL of a peptide (2 pmol) was
injected. Peptides were loaded in buffer A (0.1% formic acid in
water) and eluted from a 2 cm column (Acclaim PepMap 100, C18,
5 mm, 100 Å; Thermo Fisher Scientific, Bremen, Germany) using a
linear 7.5-min gradient of 2%e40% of buffer B (0.1% formic acid in
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acetonitrile) at a flow rate of 1 mL per minute. In each measurement
cycle, a full MS scan was acquired using the Orbitrap analyzer (mz
range 300e1700, 120K resolution). The 12 most abundant ions of
intensity at least 103 were isolated (width±1mz), fragmented using
CID (normalized collision energy: 35%), and measured in the ion
trap (AGC target ion count of 104, 100 ms accumulation time).
Already selected ions were excluded from repeated measurements
for 30 s.

4.2. Candidate peptides

For each library peptide, we constructed all amino acid com-
positions within 10 ppm of the peptide’s theoretical precursor mass
(in-house backtracking script, carbamidomethylated cysteines).
Afterward, we generated all candidate peptide sequences from the
constructed amino acid compositions.

4.3. Scoring metrics

Although we evaluated the peptide-spectrum matches with the
help of fragment indexation, herein, we express the scoring directly
for simplicity. Suppose an observed spectrum with fragment
masses m (m/z) and intensities i. Now consider a predicted theo-
retical spectrum (for a particular peptide) with m/z t. Suppose we
match these spectra up to tolerance d, thereby obtaining indices of
matching peaks:

Im ¼ CIm1 ;…; Imk D;

It ¼ CIt1;…; ItkD:

Thus for each i 2 {1, …, k},���mImk
� tItk

��� � d:

Further, if an experimental peak matches multiple theoretical
peaks, we retain only the first such index in It and a corresponding
index in Im. We now continuewith the description of the individual
scoring metrics.

4.3.1. Number of matching peaks (NMP)
The number of matching peaks is simply the k of matching

peaks.

4.3.2. Rank-normalized sum of intensities (RPSM)
First, the metric replaces the intensity vector i with its ranks.

The metric then sums the intensities of matching fragments, thus:

Xk

i¼1
iImk :

4.3.3. Hyperscore (HSPSM)
Analogously as for RPSM, the intensity vector i is replaced with

its ranks. Let b represent the number of matching b ions of a
candidate peptide (as in NMP), and analogously let y represent the
number of matching y ions. The HSPSM is then defined as:

log10

 Xk

i¼1
iImk ,b!,y!

!

The HSPSM can be thus thought of as an extension of RPSM.

4.3.4. Fragment frequency (FFPSM)
The metric exploits the distribution of predicted fragment
10
masses of all candidate peptides for a spectrum. As theoretical
spectra for many candidate peptides often share the same fragment
masses, such fragments are more likely a priori. And although rare
fragments increase the ability to match a particular peptide
uniquely, their low frequency also makes them prone to match
noise peaks. In essence, FFPSM behaves such that the less likely a
fragment mass is a priori, the greater intensity it requires to be
considered relevant. Formally, suppose all theoretical candidate
peptides p ¼ Cp1, …, pnD for a spectrum. For each i2f1;…; ng ¼ I,
suppose a theoretical spectrum ti containing all its predicted frag-
ments. For each mass of a theoretical fragment m, let f(m) be the
number of theoretical spectra that contain it, thus:

f ðmÞ ¼
���ni2 I

���m2 ti
o���:

The match is then defined as:

Xk

i¼1
log10

�
iImk , f

�
tImk

��
:

4.3.5. Length-based score adjustment
We utilized the following adjustment to scoring to suppress the

correlations of scores and peptide lengths. Suppose a vector of
scores

m ¼ Cm1;…;mnD;

such that each mi corresponds element-wise to a peptide pi of
length li, i 2 {1, …, n}, where n is the total number of candidate
peptides for a spectrum. For each peptide length l, denote ml the
subvector of m that contains just the peptides of length l. We then
defined the length-adjusted score mi

+ as

mi
+ ¼ mi �mli

where e represents the average value of e.

4.4. Calculation of posterior probabilities

4.4.1. Model
Ideally, we would like to know the probability that a peptide p

produced a spectrum s, Pr(p | s). However, calculating such proba-
bility might require Pr(s | p), the probability of observing a given
spectrum for a peptide p, which can be complicated. Instead of the
spectrum itself, we work with a vector m of peptide-spectrum
matches of all candidate peptides with the spectrum. Directly, we
would work with the whole match vectorm, thus calculating Pr(p |
m), the probability of peptide p after observing a match vector m.
Nevertheless, we use a much simpler model: the probability of a
peptide p given its match x, thus Pr(p | mp ¼ x). We use Bayes’
Theorem to derive the probability, giving

Pr
�
p
��mp ¼ x

� ¼ Pr
�
mp ¼ x

�� p�,PrðpÞ
Pr
�
mp ¼ x

� : (1)

4.4.2. Assumptions
For further simplification, we assume that observing a particular

match for a peptidedassuming the peptide is truedis independent
of the peptide. Thus, for any match x,

Pr
�
mp ¼ x j p�¼Pr

�
mq ¼ x

�� q�: (2)

Such an assumption allows us to learn the behavior of correct



M. Hruska and D. Holub International Journal of Mass Spectrometry 471 (2022) 116723
matches from all peptides in the training dataset. Similarly, we
assume that the probability of observing a particular match at
random is independent of the peptide. Thus, for any match x,

Pr
�
mp¼ x

� ¼ Pr
�
mq ¼ x

�
: (3)

4.4.3. Correct matches
Suppose a datasetD of match vectors and corresponding correct

peptides,

D ¼
n
Cm1; q1D;…; Cmn; qnD

o
;

and an indexing set I ¼ f1;…;ng. As we assume the independence
by (2), we set the probability of any peptide p having a match x as
the overall proportion at which correct peptides have a match x,

Pr
�
mp¼ x

�� p� ¼
���ni2I

���mi
qi ¼ x

o���
jIj :

4.4.4. Random matches
As we assume the independence by (3), we set the probability of

mp ¼ x as the overall proportion of x in all match vectors from D.
Thus, suppose a vector M that is a concatenation of all match vec-
tors mi for i2I. Let its total length be l, and its corresponding
indexing set J ¼ f1;…; lg. We set

Pr
�
mp ¼ x

� ¼
���j2J

��Mj ¼ x
���

jJj :

4.4.5. One-sum normalization
Due to our approximations, the posterior probabilities calcu-

lated using (1) do not generally sum to one. We neglect such
imprecision and because we analyze the behavior of a complete
search, we normalize the posterior probabilities to sum to one.

4.4.6. Calculation of NMPp
Instead of raw peptide-spectrum matches, we transformed

them into their relative formdthe distance to the best-matching
candidate (per spectrum). Thus, the best-matching candidates
have a relative fragment match of 0, those with one matching peak
less have a relative match of 1, and so forth. Note that the distri-
bution of relative fragment matches resembled a geometric dis-
tribution, with its only parameter r set to the proportion of spectra
inwhich the correct peptide had a maximal match (Supplementary
Fig. 1). Although the use of a fixed true match distribution worked
already reasonably well (data not shown), we parameterized the
true match distribution to account for further structure in the data.
For instance, the proportion of spectra in which a correct peptide
had a maximal match increased moderately with the intensity of
precursors (Spearman’s r ¼ 0.30, p ¼ 7.78 � 10�46, n ¼ 2 144), and
we wanted to take such and other dependence into account. In
particular, we predicted the probability r that a peptide has a
maximal match based on spectral characteristics and constructed a
geometric distribution of true matches with r as its only parameter.
We used logistic regression for the prediction of r, utilizing pre-
cursor intensity, precursor mass, and the total number of candidate
peptides as independent variables (LogisticRegression from
sklearn, log10 of independent variables). For the distribution of
randommatches Pr(mp), we just directly summed the distributions
11
of matches over all spectra (Supplementary Fig. 2).

4.4.7. Calculation of FFPSM+
P

Similarly as for NMPp, we transformed the matches into their
relative form. As the behavior FFPSM+

P was by far less discrete than
NMPp, we fit an exponential distribution over the distribution of
true matches (expon from scipy.stats). Note that the exponential
distribution did not fit sufficiently well the behavior of true
matches, partially because of aggregation of correct matches at a
relative maximum match around 5 (Supplementary Fig. 3). Such
behavior resulted in the underestimation of probabilities of best

candidates and partially worsened the performance of FFPSM+
P;

however, we left an examination of the reasons for future in-
vestigations. For the behavior of random matches, we merged the
distributions of matches from all spectra and fit a gaussian distri-
bution over them (norm from scipy.stats, Supplementary Fig. 4).
Note that as the norm function did not allow fitting data expressed
as distributions (as values and their counts), we sampled 106

relative maximum matches and fit the gaussian distribution over
them.

4.5. Comparison with existing software

4.5.1. Common configuration
Each algorithm was run with the following parameters: pre-

cursor tolerance (10 ppm), fragment tolerance (0.3), carbamido-
methylation of cysteines set as a fixedmodification, and no variable
modifications allowed. Each algorithmwas runwithMS/MS spectra
in mgf format, and the fragment ions were restricted to the 100
most-intense peaks. De novo sequencing algorithms were run with
the trypsin enzyme to allow comparison to the performance of
detection when prior probabilities of candidates followed the ex-
pected cleavage behavior. Database search algorithms were run
with no cleavage in order to compare the evaluation of their
spectral scoring metrics to the analyzed scoring metrics.

4.5.2. Detailed configuration
Novor (v1.06.063) was run with CID for fragmentation and Trap

for mass analyzer. PepNovo (release 20101117) was run with
CID_IT_TRYP model, parameters -use_spectrum_charge, -use_s-
pectrum_mz, -num_solutions 2000, -no_quality_filter. As PepNovo
did not support precursor tolerance in ppm, we ran it separately for
each peptide, with the parameter -pm_tolerance set to the absolute
mass tolerance corresponding to the tolerance of 10 ppm for the
mass of the correct peptide. We used DeepNovo (v. 0.0.1) from the
master branch at https://github.com/nh2tran/DeepNovo accessed
on 2020/11/26, and downloaded the pretrained model train.-
example as specified in the README. Following the example in the
README, we used the parameters eebeam_search and
eebeam_size 5 for sequencing de novo. Comet (v. 2020.01 rev. 4)
was run with the following parameters: no isotope errors
(isotope_error ¼ 0), no minimal number of peaks in spectrum
(minimum_peaks ¼ 0), I and L treated as different residues
(equal_I_and_L ¼ 0), and a newly specified enzyme ”Cut_nowhere”
(11. Cut_nowhere 0 I I) designed to avoid cleavage (no Isoleucines in
the database), and setting of the corresponding enzyme
(sample_enzyme ¼ 11). For the analysis using single-charged
fragments, we set max_fragment_charge ¼ 1, otherwise we kept
the default max_fragment_charge ¼ 3. MS-GFþ (v. 20210322) was
run with the following parameters: no isotope error (-ti 0,0), no
cleavage (-e 9), fully-specific peptides (-ntt 2), standard protocol
(-protocol 5), and 100 best candidates per spectrum (-n 100).
MSFragger (v. 3.2) was run using closed-search parameters
(closed_fragger.params), with further changes: no isotope error

https://github.com/nh2tran/DeepNovo
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(isotope_error ¼ 0), no mass calibration (calibrate_mass ¼ 0), no
cleavage (search_enzyme_cutafter ¼ U), no deisotoping
(deisotope ¼ 0), no removal of neutral losses (deneutralloss ¼ 0),
singly-charged fragments (max_fragment_charge ¼ 1), maximal
allowed number of missed cleavages (allowed_
missed_cleavage ¼ 5), no variable mods (max_variable
_mods_per_peptide ¼ 0), 100 reported results per spectrum
(output_report_topN ¼ 100), high maximal E-value
(output_max_expect ¼ 5000000), lower minimal digest length
(digest_min_length ¼ 6), no minimal fragment intensity ratio
(minimum_ratio ¼ 0). Similarly as for the Comet, for the analysis
using single-charged fragments we set max_fragment_charge ¼ 1,
otherwisewe kept the default max_fragment_charge¼ 3. Note that
we set the configuration of MSFragger to obtain close correspon-
dence of its scoring metric to the HSPSM.

Data availability

The data for the peptide library have been deposited to the
ProteomeXchange Consortium via the PRIDE partner repository
(ID: PXD013421).
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