Barbora Neužilová

E-mail: barbora.neuzilova@upol.cz

Telephone: +420585632138 ORCID: 0000-0003-0273-6671

Working experience

of Medicine and Dentistry, Palacky University, Olomouc

Small animal imaging

Researcher

- radiolabeled compounds for microPET/SPECT/MRI/CT imaging
- *in vitro* analysis of radiolabeled compounds (radio-HPLC, radio-iTLC, gamma counter analysis)
- in vivo/ex vivo biodistribution studies

11/2021 to 2/2023 Institute for Clinical and Experimental Medicine (IKEM) in Prague, Department of Nuclear Medicine

Expert in laboratory methods

• Preparation, control and registration of medicines – radiopharmaceuticals

2015 to 6/2023 CTU in Prague, Faculty of Nuclear Sciences and Physical Engineering

Researcher at the Department of Nuclear Chemistry

- Research and teaching activities
- Supervisor of bachelor theses
- Proposer of student grants (Student grant competition)
- Cooperation on scientific projects (CAAS)

Internships

8/2016 Summer practise in University hospital in Motol, Prague

Department of Nuclear medicine

 The preparation of radiopharmaceuticals and their testing for clearance

9-10/2015 Joint Institute for Nuclear Research (JINR), Dubna, Russia Laboratory of Radiobiology

Laboratory of Radioblolog

Education

2017 to present **Czech Technical University in Prague**

Faculty of Nuclear Sciences and Physical Engineering, Department

of Nuclear chemistry

Doctoral degree: Applied Natural Sciences

Dissertation topic: Chemical protection of living cells against the effects

of singlet oxygen

Czech Technical University in Prague Faculty of Nuclear Sciences and Physical Engineering, Department of Nuclear chemistry

Master's degree in Nuclear chemistry

Certificates and courses

- Osvědčení o odborné způsobilosti k navrhování pokusů a projektů pokusů
 Certificate of competence to design experiments and experimental projects
 University of Veterinary and Pharmaceutical Sciences Brno, Lifelong Learning Institute,
 2023
- Accredited qualification course Production, preparation and control of medicinal products

Institute of Postgraduate Medical Education, Prague, 2021

• International Student Practise

Project: Radiation sensitivity of mammalian cells to gamma radiation Joint Institute for Nuclear Research (JINR), Dubna, Russia, 2015

Skills

Languages

Czech - native language English - intermediate German - intermediate

- PC Windows Offices: Word, Excel, PowerPoint
- Certificates Driving license B

Publications

- (1) Neužilová, B., Čuba, V., Crhánová, M., Múčka, V. Study of cell protective effects of alcohols against UV-C radiation and comparison to gamma radiation. Journal of Radioanalytical and Nuclear Chemistry. **2023**, 332, 1591–1596. https://doi.org/10.1007/s10967-023-08765-z
- (2) Popovich, K., Klepárník, K., Ledvina, V., Neužilová, B., Fleišmann, J., Škodová, M., Kobera, L., Mihóková, E., Múčka, V., Čuba, V. Luminescent Nanocomposites for Biomedical Applications, IEEE Transactions on Nuclear Science. **2020**, 67(6), 962-968. https://doi.org/10.1109/TNS.2020.2974316.
- (3) Neužilová, B., Ondrák, L., Čuba, V., Múčka, V. ETHANOL AS A MODIFIER OF RADIATION SENSITIVITY OF LIVING CELLS AGAINST UV-C RADIATION, Radiation Protection Dosimetry. **2019**, 186(2-3), 191–195. https://doi.org/10.1093/rpd/ncz200

- (4) Ondrák, L., Vachelová, J., Davídková, M., Neužilová, B., Čuba, V., Múčka, V. RADIOPROTECTIVE EFFECT OF HYDROXYL RADICAL SCAVENGERS ON PROKARYOTIC AND EUKARYOTIC CELLS UNDER VARIOUS GAMMA IRRADIATION CONDITIONS, Radiation Protection Dosimetry. **2019**, 186(2-3), 186-190. https://doi.org/10.1093/rpd/ncz201
- (5) Múčka, V., Červenák, J., Reimitz, D., Čuba, V., Bláha, P., Neužilová, B. Effects of irradiation conditions on the radiation sensitivity of microorganisms in the presence of OH-radical scavengers. International Journal of Radiation Biology. **2018**, 94(12), 1142-1150. https://doi.org/10.1080/09553002.2018.1532610
- (6) Neužilová, B., Ondrák, L., Čuba, V., Múčka, V., Influence of the dose rate of gamma irradiation and some other conditions on the radiation protection of microbial cells by scavenging of OH radicals. Journal of Radioanalytical and Nuclear Chemistry. **2018**, 318(3), 2449–2453.
 - https://doi.org/10.1007/s10967-023-08765-z