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Abstract

In this work, we describe synthesis of conjugates of betulinic acid with substituted triazoles

prepared via Huisgen 1,3-cycloaddition. All compounds contain free 28-COOH group. Allylic

bromination of protected betulinic acid by NBS gave corresponding 30-bromoderivatives,

their substitution with sodium azides produced 30-azidoderivatives and these azides were

subjected to CuI catalysed Huisgen 1,3-cycloaddition to give the final conjugates. Reactions

had moderate to high yields. All new compounds were tested for their in vitro cytotoxic activi-

ties on eight cancer and two non-cancer cell lines. The most active compounds were conju-

gates of 3β-O-acetylbetulinic acid and among them, conjugate with triazole substituted by

benzaldehyde 9b was the best with IC50 of 3.3 μM and therapeutic index of 9.1. Five com-

pounds in this study had IC50 below 10 μM and inhibited DNA and RNA synthesis and

caused block in G0/G1 cell cycle phase which is highly similar to actinomycin D. It is unusual

that here prepared 3β-O-acetates were more active than compounds with the free 3-OH

group and this suggests that this set may have common mechanism of action that is differ-

ent from the mechanism of action of previously known 3β-O-acetoxybetulinic acid deriva-

tives. Benzaldehyde type conjugate 9b is the best candidate for further drug development.

Introduction

Triterpenes are natural compounds that may be found in almost all living organisms and they

are particularly prevalent in plants [1]. These compounds are not part of the main metabolic

pathways, they are secondary metabolites. Interestingly, they have a variety of biological activi-

ties, which may be the reason why organisms produce them. Among the activities, we may

find antitumor, antibacterial, anticariogenic, antiparasitic, antifungal and many others [2–11].

In our research group we are developing new derivatives of betulinic acid (1) in order to find

compounds with higher cytotoxicity and better pharmacological properties than the parent

compound. One of the possibilities explored was annealing of a heterocycle to the main terpe-

nic skeleton, which resulted in a small library of about fifty new compounds [12–15]. Among
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them, four derivatives had IC50 in low micromolar range and currently belong to our most

promising compounds in in vivo tests. All four active heterocycles are derivatives of betulinic

acid (1). Recently, a number of new triterpenoid heterocycles were prepared and a number of

them had high cytotoxic activity [16–20]. To improve pharmacological properties of triter-

penes, especially their solubility in water, various modifications of triterpenes were done and

some of them were successful, especially compounds with another (polar) molecule connected

to them. Examples include esters with sugars, glycosides, esters with dicarboxylic acids, conju-

gates with polyethylene glycol, ammonium salts etc [21–29].

Recently, a number of new articles were published on connecting a terpene with another

molecule of interest via Huisgen 1,3-cycloaddition reaction. The first approach used terpenes

substituted with alkynes in the position 3 [30–34], second approach used propargylesters or

amides prepared at 28-COOH group [35–45], and the third approach used 30-azidoderivatives

prepared via 30-bromoderivatives [46;47]. Rarely, also position 2 is modified [48] or two posi-

tion at once (3 and 30) in [49].

In this work, we decided to explore the third option and to connect betulinic acid (1) to

other molecules of interest. Introduction of a rather polar triazole ring capable of forming

hydrogen bonds was expected to improve solubility of the target molecules in water based

media and bioavailability [50;51]. Possibly, the triazole ring may also become a part of the

pharmacophore. On the other hand, introduction of a completely new moiety on the other

side of the triazole ring (another aromatic rings—both heterocyclic and carbocyclic, aldehydes,

amines etc.) could change the biological properties such as cytotoxicity or selectivity and the

new compounds could act by different mechanism of action than the parent betulinic acid (1).

Among the derivatives prepared by other research groups there are only few examples [46;47]

containing both free 28-carboxylic group and free 3-hydroxy group. In most cases, cycloaddi-

tion reactions were done with acid 1 protected as methyl ester or as acetate and the final mole-

cules were also tested with the protective group on. There are many examples in the literature

[21;52;53] that betulinic acid (1) derivatives are highly cytotoxic when unprotected while

methylesters and acetates are usually inactive. Therefore, the main aim of this work was to

explore unprotected derivatives of betulinic acid (1) modified by cycloaddition reactions in

the position 30 and to explore their cytotoxic activity and influence on cancer cells.

Results and discussion

Chemistry

Bromination of betulinic acid (1) derivatives at the allylic position (C-30) is described in the

literature [54–57] that mostly used NBS as the bromination agent, AIBN as a radical source

and CCl4 as an inert solvent. In this work, we found that the method afforded only low yields

when free acid 1 was used. All reagents have limited solubility in CCl4 and dibromoderivative

starts forming before the full conversion of the starting betulinic acid (1) to 30-bromobetulinic

acid. To increase the solubility of acid 1, we choose to protect it at the position 3 as acetate or

triphenylsilylether. We decided to leave the 28-COOH group unprotected, since this neopen-

tyl-type ester requires harsh conditions for its deprotection and the presence of free carboxylic

group should not interfere with the following reactions. For protection of 3β-OH group, ace-

tate was chosen as a stable protective group that would be cleavable in basic conditions, triphe-

nylsilyl group was chosen as more labile protective group easily removable in acidic conditions

or by the fluorine anion. This should allow for almost unlimited variability of the new substitu-

ents. Both acetate 2 and triphenylsilyl derivative 3 were synthesized by standard procedures.

Bromination of 2 and 3 afforded good yields of pure bromoderivatives 4 and 5. The reaction
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of bromoderivatives 4 and 5 with sodium azide gave corresponding 30-azidoderivatives 7, 8,

and to obtain the unprotected azide 6, silylether 8 was deprotected by TBAF in THF; Fig 1.

Final derivatives containing acetate or triphenylsilylether at the position 3 (compounds 9a–

9h, 10a–10g) were prepared by Huisgen 1,3-cycloaddition from azides 6 and 7. Depending on

the reactivity, one or two equivalents of alkyne was used and the reaction was performed either

at r.t. or at 50˚C. Yields were moderate to high with the only exception—reaction of each azide

6–8 with propargylamine that gave 10% yield of acetate 9h but no sililated nor free product

was obtained. Reaction with FMOC or BOC protected propargylamine also did not yield the

desired product. In all cases, a mixture of polar unseparable compounds was obtained and we

were unable to isolate the desired product. The cycloaddion was catalyzed by CuI species

which ensured that only the proposed 1,4-isomer formed. Traces of Cu were removed by treat-

ment of the crude products with H2S before chromatography but the amount of remaining

metal was not determined. This will be performed if any compound of this set will enter fur-

ther biological tests. Free derivatives 11a–11g were obtained by the deprotection of their sily-

lated analogues using TBAF in THF (all 11a–11g were prepared this way) with reasonable

yields 58–81%. To find out if the compounds are stable during acidic deprotection procedure,

derivatives 10a, 10c, 10d, and 10f were also deprotected by HCl in CHCl3 with comparable

yields of 62–76%. Attempts to prepare compounds 11c and 11d directly from the unprotected

azide 8 were also successful with average yields of 75%. We may conclude, that all three ways

to the unprotected derivatives 11a–11g give similar results.

Biological assay

Cytotoxicity. Cytotoxic activity of all synthesized compounds was investigated in vitro
against eight human cancer cell lines and two non-tumor fibroblasts using the standard MTS

test (Table 1). The cancer cell lines were derived from T-lymphoblastic leukemia CCRF-CEM,

leukemia K562 and their multiresistant counterparts expressing P-glycoprotein, MRP1 and

LRP proteins (CEM-DNR, K562-TAX) [58], solid tumors including lung (A549) and colon

Fig 1. The preparation of all derivatives. Reagents and conditions: (a) Ac2O, pyridine, r.t. 16 h; (b) Ph3SiCl, DMF, imidazole, r.t. 36 h; (c) NBS, AIBN,

CCl4, 75˚C for 1 h then 50˚C for 3 h; (d) NaN3, DMSO, r.t., 36 h; (e) TBAF, THF, r.t., 18–32 h, or HCl, CH2Cl2, r.t., 5–11 h; (f) azides 6, 7 or 8, CuSO4�5H2O,

sodium L-ascorbate, alkynes.

doi:10.1371/journal.pone.0171621.g001
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(HCT116, HCT116p53-/-) carcinomas, osteosarcoma cell line (U2OS), and for comparison,

tests were performed on two human non-cancer fibroblast cell lines (BJ, MRC-5).

All derivatives prepared within this study have free 28-COOH group that was expected to

be essential for retaining of the biological activity. Cytotoxicity of the selected starting com-

pounds and also compounds modified at C-30 by Huisgen 1,3-cycloadditions are in Table 1

(acetylated derivatives 9a–9h, silylated analogues 10a–10g, and fully deprotected derivatives

11a–11g that were expected to be the most active).

Among the starting material, bromide 4 and azide 6 had significant activity (IC50 5.7 and

7.4 μM) on multiple cancer cell lines with therapeutic index of 4.9 or 3.2 (calculated for the ref-

erence CCRF-CEM line). To our surprise, both compounds 4 and 6 are 3β-O-acetates, which

is in contrast to our initial assumptions that acetates should be less active than compounds

with the free 3β-hydroxy group. In addition, our results indicate, that acetates 9a–9h are often

highly active (with IC50 in low micromolar ranges) on multiple cancer cell lines (parental and

mutiresistant) and in most cases, they are more active than their non-acetylated analogues

11a–11g. The most active compound of this study is derivative 9b (IC50 3.3 μM on the refer-

ence CCRF-CEM cell line) which belongs among acetates and contains benzaldehyde

connected to the position 30 through the triazole ring formed by the cycloaddition. The com-

pound has reasonable therapeutic index 9.1 and seems the most promising derivative of this

study. Its non-acetylated derivative is also active on the reference line (IC50 8.5 μM) and we see

this trend throughout all of the prepared derivatives, compounds 9a–9g are more active than

free compounds 11a–11g with only few exceptions.

Table 1. Cytotoxic activities of prepared derivatives on eight tumor (including resistant) and two normal fibroblast cell lines. All other compounds

prepared in this work were also tested but their activities on these 10 cell lines were higher than 50 μM which is considered inactive.

Comp. IC50 (μM/L)a

CCRF-CEM CEM-DNR K562 K562- TAX A549 HCT116 HCT116p53-/- U2OS BJ MRC-5 TIb

1 45.5 45.4 40.0 43.1 43.4 38.0 >50.0 >50.0 37.6 32.9 0.7

4 5.7 15.3 21.7 15.8 13.2 15.9 14.1 21.2 31.7 24.2 4.9

5 >50.0 13.2 >50.0 12.2 >50.0 35.6 31.1 27.9 >50.0 >50.0 -

6 7.4 19.2 12.3 15.5 17.6 18.6 19.7 20.9 26.7 20.0 3.2

8 21.7 25.8 17.2 23.9 23.0 25.5 24.0 25.0 34.0 19.1 1.2

9a 13.4 19.5 15.1 19.1 23.4 25.1 31.1 24.8 >50.0 32.4 >3.1

9b 3.3 4.0 3.6 3.9 14.8 6.4 9.5 12.8 31.3 28.9 9.1

9c 9.0 14.4 22.1 13.8 13.2 30.3 13.7 16.0 29.5 27.6 3.2

9d 14.9 12.0 13.3 11.2 11.3 19.2 18.7 17.3 29.9 28.2 1.9

9e 19.4 29.6 35.4 30.0 26.6 32.9 33.1 31.0 35.1 30.3 1.6

9f 34.5 15.0 15.6 23.4 45.0 41.9 48.4 45.8 >50.0 >50.0 >1.4

9g 26.2 30.8 43.6 29.1 >50.0 38.3 47.6 44.1 >50.0 >50.0 >1.9

9h 20.2 28.3 >50.0 >50.0 30.5 32.0 >50.0 30.6 >50.0 >50.0 >2.5

11a 16.6 23.8 >50.0 23.3 >50.0 >50.0 >50.0 >50.0 >50.0 >50.0 >3.0

11b 8.5 11.5 >50.0 13.7 >50.0 26.3 26.9 >50.0 >50.0 >50.0 >5.9

11c 14.4 8.5 >50.0 7.2 >50.0 >50.0 >50.0 >50.0 >50.0 >50.0 >3.5

11f >50.0 13.7 >50.0 16.0 >50.0 36.7 >50.0 >50.0 >50.0 >50.0 -

11g 16.7 38.0 >50.0 23.3 >50.0 33.5 >50.0 >50.0 >50.0 >50.0 >3.0

aThe lowest concentration that kills 50% of cells. The standard deviation in cytotoxicity assays is typically up to 15% of the average value. Compounds with

IC50 > 50 μM are considered inactive.
bTherapeutic index is calculated for IC50 of CCRF-CEM line vs average of both fibroblasts.

doi:10.1371/journal.pone.0171621.t001
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In general, it seems that modified C-30 position, conjugated to a large triazole-aromatic

substituent became an important part of the pharmacophore and is responsible for the cyto-

toxicity. In contrast, the functional group at C-3 probably influences the bioavailability of each

molecule. Compounds with free both 28-COOH and 3β-OH groups contain two hydrophilic

functional group on the opposite sides of their molecules and this may interfere with their per-

meability through cellular membranes. Small and lipophilic acetate on one side of the molecule

can solve this problem.

Cell cycle analysis. We have observed that most cytotoxic derivatives from this study are

3O-acetylated 30-bromo, 30-azido derivatives 4 and 6, 3O-acetylated conjugates 9b and 9c,

and one 3-hydroxyderivative 11b. All of them are inhibiting DNA and RNA synthesis. The

inhibition of the cell cycle in G0/G1 was observed with highest accumulation after treatment

with acetylated derivative 9b. The high percentage of apoptotic cells (sub G1) is observed at

5 × IC50 concentration, pointing on rapid induction of apoptosis (Table 2).

Conclusions

Three sets of betulinic acid derivatives modified at C-30 were prepared by Huisgen 1,3-cyclo-

addition catalyzed by CuI species. All compounds have free 28-COOH and the first set are 3β-

O-acetates 9a–9h, the second set are 3β-silylethers 10a–10g, and the third set are compounds

with free 3β-OH group 11a–11g. All compounds were subjected to tests of cytotoxicity on 8

cancer cell lines and 2 non cancer fibroblasts. Several derivatives had IC50 in low micromolar

ranges for parental and multiresistant cell lines, the best compound was aldehyde-acetate 9b

which also had high therapeutic index and this makes the compound the most promising can-

didate for future in vivo tests and for studies of mechanism of action. In this work, unusual

trend was found between the activities of 3β-O-acetates vs. free compounds. Acetates 9a–9h,

were usually more active than free derivatives 11a–11g. This suggests that compounds pre-

pared in this study may have mechanism of action that differs from acetylated betulinic deriva-

tives known from the literature [21] where this trend is opposite. Moreover, the inhibition of

DNA and RNA was observed even at 1 × IC50 concentrations together with G1 cell cycle block

which is highly similar to actinomycin D behavior [59]. Thus, one may speculate that conjuga-

tion of the new triazole ring equipped with carbocyclic (or heterocyclic) ring forms a new type

of pharmacophore. To prove it, however, the compound will have to be further transformed

Table 2. Influence of compounds 4, 6, 9b, 9c, 11b on cell cycle, DNA and RNA synthesis at 1a × and 5b × IC50.

Comp. Used conc. (μM) Sub G1 (%) G0/G1 (%) S (%) G2/M (%) pH3Ser10 (%) DNA synthesis RNA synthesis

Control 0 2.2 38.4 42.4 19.3 2.1 37.5 42.1

4 5.7a 9.4 47.3 35.9 16.8 1.34 38.6 56.3

4 28.5b 39.7 33.7 43.0 23.2 2.35 5.80 24.8

6 7.4a 10.7 49.3 30.4 20.3 1.80 33.0 14.1

6 37.0b 70.0 41.4 34.8 23.8 2.68 1.00 1.70

9b 3.3a 10.8 58.6 21.9 19.5 1.19 22.6 15.8

9b 16.5b 51.9 35.7 46.2 18.1 0.37 0.55 0.08

9c 9.0a 7.2 48.9 30.9 20.3 1.47 20.3 25.4

9c 45.0b 65.6 40.5 38.5 21.0 0.89 2.90 0.40

11b 8.5a 65.6 59.0 25.3 15.7 0.88 20.0 48.3

11b 42.5b 65.6 45.5 35.4 19.1 1.19 6.40 38.1

aThe values were obtained at 1 × IC50.
bThe values were obtained at 5 × IC50.

doi:10.1371/journal.pone.0171621.t002
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into a probe suitable for pull down assays [49] or into a fluorescent probe and more biological

tests will have to be done.

Experimental

General experimental procedures

Materials and instruments. Melting points were determined using a Büchi B-545 appara-

tus and are uncorrected. Optical rotations were measured on an Autopol III (Rudolph

Research, Flanders, USA) polarimeter in MeOH at 25˚C unless otherwise stated and are in

[10−1 deg cm2 g-1]. 1H and 13C NMR spectra were recorded on VarianUNITY Inova 400 (400

MHz for 1H) or VarianUNITY Inova 300 (300 MHz for 1H) or Jeol ECX-500SS (500 MHz for
1H) instruments, using CDCl3, D6-DMSO or CD3OD as solvents (25˚C). Chemical shifts

were eider referenced to the residual signal of the solvent (CDCl3, D6-DMSO) or to tetra-

methylsilane added as an internal standard. 13C NMR spectra were eider referenced to CDCl3

(77.00 ppm) or D6-DMSO (39.51 ppm) or to tetramethylsilane added as an internal standard.

EI MS spectra were recorded on an INCOS 50 (Finigan MAT) spectrometer at 70 eV and an

ion source temperature of 150˚C. The samples were introduced from a direct exposure probe

at a heating rate of 10 mA/s. Relative abundances stated are related to the most abundant ion

in the region of m/z> 180. HRMS analysis was performed using LC-MS an Orbitrap high-res-

olution mass spectrometer (Dionex Ultimate 3000, Thermo Exactive plus, MA, USA) operat-

ing at positive full scan mode in the range of 100–1000 m/z. The settings for electrospray

ionization were as follows: oven temperature of 150˚C, source voltage of 3,6 kV. The acquired

data were internally calibrated with phthalate as a contaminant in methanol (m/z 297.15909).

Samples were diluted to a final concentration of 0.1 mg/mL in methanol. The samples were

injected to mass spectrometer over autosampler after HPLC separation: precolumn phenom-

enex 2.6 μm C18. Mobile phase isokrat. CH3CN/IPA/amonium acetate 0.01M 80/10/10, flow

0,3 mL/min. IR spectra were recorded on a Nicolet Avatar 370 FTIR. DRIFT stands for Diffuse

Reflectance Infrared Fourier Transform. TLC was carried out on Kieselgel 60 F254 plates

(Merck) detected by spraying with 10% aqueous H2SO4 and heating to 150–200˚C. Starting tri-

terpenes—betulin (1), dihydrobetulonic acid (2b), and allobetulin (3a) were obtained from

company Betulinines (www.betulinines.com). All other chemicals and solvents were obtained

from Sigma-Aldrich.

Synthetic procedures

General procedure for Huisgen cycloaddition of triterpenic azides. Each azide was dis-

solved in DMF (4 mL/100 mg) and sodium L-ascorbate (0.5 equiv.) was added followed by

CuSO4�5H2O. The reaction mixture was stirred until its color turned green which is the sign

for CuI species being formed (usually 20 min). Then, each alkyne was added (1–2 equiv.) and

the reaction mixture was stirred at room temperature (or 50˚C) for various time, conditions

are specified for each compound. The reaction was monitored using TLC in hexane/EtOAc in

ratios 3: 1–1: 2 depending on substrates. After the reaction was completed, the mixture was

poured on ice where the product precipitated. The precipitate was filtered on frit, washed with

water and dried in desiccator, then it was dissolved in EtOAc, traces of copper ions were pre-

cipitated by H2S and filtered off. Product was then purified by column chromatography on sil-

ica gel (100 × weight of the terpene) in hexane/EtOAc or cyclohexane/EtOAc in various ratio.

Analytical samples were purified on HPLC, crystallized or lyophilized. Specific conditions,

such as reaction times, temperature, and mobile phase for TLC, CC or HPLC are specified in

each experiment.

Cytotoxic conjugates of betulinic acid and substituted triazoles
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General procedures for the deprotection of silylated compounds. Procedure 1: each

triazole (0.2 mmol) was dissolved in THF (5 mL), then TBAF (2 mL; 10 equiv.; 1M solution in

THF) was added. The reaction mixture was stirred at various temperature until the reaction

was completed (monitored by TLC with 5% MeOH in CHCl3 as mobile phase), the deprotec-

tion usually took 18–32 h. The reaction mixture was poured to water and the product was

extracted to EtOAc. The organic phase was washed twice with 5% NaHCO3 and with water,

dried over MgSO4 and evaporated. Crude product was chromatographed on silica gel (10–20

g) in gradient CHCl3 to 10% MeOH in CHCl3. Analytical samples and samples for biological

tests were purified on reverse phase C-18 HPLC in isocratic mobile phase: 80% CH3CN,

20% buffer (0.1% NH4OAc in water). Reaction temperature and time is specified at each

experiment.

Procedure 2: each triazole (0.2 mmol) was dissolved in CH2Cl2 (5 mL) and HCl (0.3 mL,

35% in water) was added. The reaction mixture was stirred at r.t. for 5–11 h while monitored

on TLC with 5% MeOH in CHCl3 as mobile phase. After the reaction was completed, 5%

NaHCO3 in water was added to adjust the pH to about 5. The mixture was stirred yet another

1 h, then poured to water, extracted to CHCl3, washed with water and dried over MgSO4.

Organic solvents were evaporated in vacuo and the crude product was chromatographed on

silica gel (10–20 g) in gradient CHCl3 to 10% MeOH in CHCl3. Analytical samples and sam-

ples for biological tests were purified on reverse phase C-18 HPLC in isocratic mobile phase:

80% CH3CN, 20% buffer (0.1% NH4OAc in water).

3β-Triphenylsililbetulinic acid 3. 5 g (10.9 mmol) of betulinic acid 1 was dissolved in

DMF (100 mL), then Ph3SiCl (5.9 g, 20 mmol) and imidazole (1.4 g, 21 mmol) was added. The

reaction mixture was stirred at r.t. for 36 h while being monitored on TLC (hexane/EtOAc 4:

1). The crude reaction mixture was poured on ice while the product precipitated, the precipi-

tate was filtered off on a frit, washed with water and dried in desiccator. Crude product was

chromatographed on silica gel (200 g) in gradient of hexane/EtOAc from 5: 1 to 2: 1 and crys-

tallized from hexane.

Compound 3 was obtained as white crystals, 6.6 g (85%): mp 147–148˚C. IR (DRIFT):

2400–3400, 1720, 1692, 1642 cm-1. 1H NMR (500 MHz, CDCl3): δ 0.84 (s, 3H); 0.88 (s, 3H);

0.92 (s, 3H); 0.93 (s, 3H); 0.96 (s, 3H, H-23, 24, 25, 26, 27); 1.68 (s, 3H, H-30); 2.16 (td, 1H, J1 =

12.9 Hz, J2 = 3.7 Hz); 2.27 (dt, 1H, J1 = 12.9 Hz, J2 = 3.2 Hz); 3.00 (td, 1H, J1 = 10.9 Hz, J2 = 4.6

Hz, H-19β); 3.34 (dd, 1H, J1 = 11.8 Hz, J2 = 4.6 Hz, H-3α); 4.60 (dd, 1H, J1 = 2.0 Hz, J2 = 1.5

Hz, H-29 pro-E), 4.73 (d, 1H, J = 2.0 Hz, H-29 pro-Z); 7.35–7.41 (m, 6H); 7.42–7.46 (m, 3H);

7.63–7.68 (m, 6H, 15 × H-Ph). 13C NMR (125 MHz, CDCl3): δ = 14.68; 15.99; 16.12; 16.33;

18.40; 19.35; 20.77; 25.43; 27.92; 28.45; 29.65; 30.65; 32.14; 34.26; 37.00; 38.39; 38.54; 39.57;

40.63; 42.39; 46.89; 49.24; 50.32; 55.24; 56.37; 77.20; 81.16; 109.64; 127.67; 129.69; 135.38;

135.55; 150.37; 182.06. MS (ESI-): m/z (%) = 713 (100, [M-H]-). HRMS (ESI-) m/z calcd for

C48H63O3Si [M-H]- 713.4384, found 713.4373.

Bromination of the position C-30 in derivatives 2 and 3. Each derivative 2 and 3 (2.8

mmol) was dissolved in CCl4 (30 mL). Then, NBS (0.8 g, 4.5 mmol) and AIBN (0.14 mmol,

5%) was added and the reaction mixture was stirred at 75˚C for 1h. Then, the reaction mixture

was stirred at 50˚C for 3 h and another several hours (TLC) at 5˚C to finish the reaction com-

pletion. The reaction had to be frequently monitored by TLC in hexane/EtOAc (2: 1 for prod-

uct 4 and 5: 1 for 5) because keeping the reaction mixture at elevated temperature for longer

period than necessary leads to dibrominated sideproducts. After the completion, the reaction

mixture was poured into water, extracted to EtOAc, 3 × washed with water, dried over MgSO4

and evaporated. Crude products were purified on silica gel in gradient of hexane/EtOAc 4: 1 to

1: 1 and crystallized from hexane.
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Compound 4 (3β-O-Acetyl-30-bromobetulinic acid) was obtained as white crystals, 1.1 g

(65%): mp 170–172˚C. IR (DRIFT): 2600–3400, 1721, 1642 cm-1. 1H NMR (500 MHz, CDCl3):

δ 0.84 (s, 3H); 0.85 (s, 3H); 0.86 (s, 3H); 0.94 (s, 3H); 0.99 (s, 3H, H-23, 24, 25, 26, 27); 1.98 (q,

1H, J = 8.0 Hz); 2.05 (s, 3H, Ac); 2.20 (dt, 2H, J1 = 11.5 Hz, J2 = 2.9 Hz); 2.31 (dd, 1H, J1 = 12.9

Hz, J2 = 2.9 Hz); 3.04 (td, 1H, J1 = 11.2 Hz, J2 = 4.6 Hz, H-19β); 4.01 (AB-system, 2H, JGEM =

10.3 Hz, H-30); 4.48 (dd, 1H, J1 = 10.9 Hz, J2 = 5.7 Hz, H-3α); 5.05 (s, 1H, H-29 pro-E); 5.16 (s,

1H, H-29 pro-Z). 13C NMR (125 MHz, CDCl3): δ = 14.65; 16.08; 16.17; 16.45; 18.14; 20.95;

21.30; 23.67; 26.77; 27.94; 29.68; 32.03; 33.11; 34.25; 36.74; 37.12; 37.14; 37.79; 38.38; 38.41;

40.71; 42.37; 42.99; 50.35; 50.82; 55.40; 56.43; 80.91; 113.46; 151.20; 171.06; 181.89. MS (ESI-):

m/z (%) = 575 (100, [M-H]-). HRMS (ESI-) m/z calcd for C32H49BrO4 [M-H]� 575.2730,

found 575.2722 and 577.2710, found 577.2701.

Compound 5 (3β-O-Triphenylsilyl-30-bromobetulinic acid) was obtained as white crystals,

1.8 g (81%): mp 208–210˚C. IR (DRIFT): 2600–3400, 1718, 1642 cm-1. 1H NMR (500 MHz,

CDCl3): δ 0.84 (s, 3H); 0.88 (s, 3H); 0.92 (s, 3H); 0.94 (s, 3H); 0.96 (s, 3H, H-23, 24, 25, 26, 27);

1.75 (t, 2H, J = 10.9 Hz); 1.97 (dd, 1H, J1 = 12.0 Hz, J2 = 4.6 Hz); 2.17 (m, 2H); 2.30 (d, 1H,

J = 9.7 Hz); 3.03 (td, 1H, J1 = 11.5 Hz, J2 = 4.6 Hz, H-19β); 3.33 (dd, 1H, J1 = 12.0 Hz, J2 = 4.6

Hz, H-3α); 3.99 (s, 2H, H-30); 5.03 (s, 1H, H-29 pro-E), 5.14 (s, 1H, H-29 pro-Z); 7.37–7.45 (m,

9H); 7.64–7.65 (d, 6H, J = 6.3 Hz, 15 × H-Ph). 13C NMR (125 MHz, CDCl3): δ = 14.68; 16.04;

16.12; 16.32; 18.39; 20.87; 23.67; 26.75; 27.90; 28.45; 29.64; 32.02; 33.04; 34.28; 36.73; 37.00;

38.38; 38.53; 39.56; 40.64; 42.35; 43.04; 50.27; 50.77; 55.22; 56.39; 81.13; 113.44; 127.67; 129.69;

135.36; 135.54; 151.18; 181.78. MS (ESI-): m/z (%) = 791 (100, [M-H]-). HRMS (ESI-) m/z

calcd for C48H61BrO3Si [M+H]+ 791.3495, found 791.3491 and 793.3475, found 793.3480.

Azides 6–8. Bromoderivative 4 (2 mmol) was dissolved in DMSO (40 mL) and NaN3 (260

mg, 2 equiv.) was added. The reaction mixture was stirred at r.t. for 36 h, the reaction was

monitored on TLC in hexane/EtOAc 10: 1. After that, the reaction mixture was worked up in

the usual manner and crude product was chromatographed on silica gel (100 g) in gradient

hexane/EtOAc 10: 1 to hexane/EtOAc 2: 1.

Compound 6 (3β-O-Acetyl-30-azidobetulinic acid) was obtained as 700 mg (65%): mp

148–150˚C (hexane). IR (DRIFT): 2600–3400, 2103, 1719, 1642 cm-1. 1H NMR (500 MHz,

CDCl3): δ 0.83 (s, 3H); 0.85 (s, 3H); 0.93 (s, 3H); 0.99 (s, 3H); 1.04 (s, 3H, H-23, 24, 25, 26, 27);

2.05 (s, 3H, Ac); 2.29 (d, 1H, J = 10.2 Hz); 2.94 (td, 1H, J1 = 10.9 Hz, J2 = 4.6 Hz, H-19β); 3.77

(AB-system, 2H, JGEM = 16.0 Hz, H-30); 4.47 (dd, 1H, J1 = 10.9 Hz, J2 = 5.2 Hz, H-3α); 4.99 (s,

1H, H-29 pro-E), 5.04 (s, 1H, H-29 pro-Z). 13C NMR (125 MHz, CDCl3): δ = 14.61; 16.03;

16.15; 16.44; 18.11; 20.92; 21.29; 23.64; 26.73; 27.92; 29.65; 31.97; 34.20; 36.72; 37.09; 37.10;

37.77; 38.31; 38.35; 40.68; 42.33; 43.41; 50.29; 55.36; 55.62; 55.63; 56.41; 80.89; 111.55; 148.85;

171.07; 182.21. MS (ESI-): m/z (%) = 538 (100, [M-H]-). HRMS (ESI-TOF) m/z calcd for

C32H49N3O4 [M-H]- 538.3639, found 538.3632.

Compound 7 (3β-O-Triphenylsilyl-30-azidobetulinic acid) was prepared by the same pro-

cedure as compound 6 except CH3CN was used as a solvent because of low solubility of 5 in

DMSO. The reaction gave 815 mg (54%): mp 171–175˚C (hexane). IR (DRIFT): 2600–3400,

2106, 1723, 1490 cm-1. 1H NMR (500 MHz, CDCl3): δ 0.84 (s, 3H); 0.88 (s, 3H); 0.91 (s, 3H);

0.94 (s, 3H); 0.96 (s, 3H, H-23, 24, 25, 26, 27); 1.97 (dd, 1H, J1 = 12.6 Hz, J2 = 8.0 Hz); 2.28 (d,

1H, J = 9.2 Hz); 2.93 (td, 1H, J1 = 11.5 Hz, J2 = 5.2 Hz, H-19β); 3.33 (dd, 1H, J1 = 12.0 Hz, J2 =

4.6 Hz, H-3α); 3.75 (AB-system, 2H, JGEM = 13.8 Hz, H-30); 4.96 (s, 1H, H-29 pro-E); 5.02 (s,

1H, H-29 pro-Z); 7.36–7.45 (m, 9H); 7.65 (d, 6H, J = 8.0 Hz, 15 × H-Ph). 13C NMR (125 MHz,

CDCl3): δ = 14.11; 14.66; 16.00; 16.12; 16.32; 18.38; 20.87; 22.64; 26.72; 27.88; 28.44; 29.63;

31.91; 31.97; 34.26; 36.72; 37.00; 38.29; 38.53; 39.56; 40.63; 42.33; 43.46; 50.27; 55.21; 55.49;

56.37; 81.11; 127.67; 129.69; 135.35; 135.54; 148.84; 181.73. MS (ESI-): m/z (%) = 754 (100,

[M-H]-). HRMS (ESI-TOF) m/z calcd for C48H61N3O3Si [M+H]+ 754.4398, found 754.4384.
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1.5 g (2 mmol) of compound 7 was deprotected according to the general procedure 1 to

give colourless crystals of 30-azidobetulinic acid (8) 833 mg (84%): mp 171–175˚C (CHCl3/

MeOH). IR (DRIFT): 2600–3400, 2115, 1714, 1640 cm-1. 1H NMR (500 MHz, CDCl3): δ 0.76

(s, 3H); 0.83 (s, 3H); 0.94 (s, 3H); 0.97 (s, 3H); 0.99 (s, 3H, H-23, 24, 25, 26, 27); 1.97 (dd, 1H,

J1 = 12.6 Hz, J2 = 7.7 Hz); 2.16 (m, 2H); 2.30 (d, 1H, J = 12.6 Hz); 2.95 (td, 1H, J1 = 11.2 Hz,

J2 = 4.8 Hz, H-19β); 3.20 (dd, 1H, J1 = 11.5 Hz, J2 = 4.6 Hz, H-3α); 3.78 (AB-system, 2H JGEM =

14.3 Hz, H-30); 4.98 (s, 1H, H-29 pro-E), 5.04 (s, 1H, H-29 pro-Z). 13C NMR (125 MHz,

CDCl3): δ = 14.67; 15.32; 16.04; 16.10; 18.24; 20.94; 26.78; 27.33; 27.97; 29.36; 31.94; 34.31;

36.74; 37.19; 38.32; 38.69; 38.85; 40.68; 42.37; 43.46; 50.30; 55.30; 55.54; 56.37; 78.98; 111.50;

113.98; 127.76; 148.88; 181.25. MS (ESI-): m/z (%) = 496 (100, [M-H]-). HRMS (ESI-) m/z
calcd for C30H47N3O3 [M-H]- 496.3534, found 496.3525.

Acetylated compounds 9a–9h. Compound 9a was obtained from 150 mg (0.28 mmol) 6

by the general procedure using 1 equiv. of alkyne, at 50˚C while reaction time was 16 h. The

yield of white crystals was 169 mg (95%): mp 177–178˚C (hexane). IR (DRIFT): 2600–3400,

1725, 1647 cm-1. 1H NMR (500 MHz, CDCl3): δ 0.83 (s, 3H); 0.85 (s, 6H); 0.92 (s, 3H); 0.97 (s,

3H, H-23, 24, 25, 26, 27); 1.77 (t, 1H, J = 11,5 Hz); 1.95 (dd, 1H, J1 = 8.3 Hz, J2 = 4.6 Hz); 2.05

(m, 3H, Ac); 2.17 (td, 1H, J1 = 12.3 Hz, J2 = 3.4 Hz); 2.29 (m, 1H); 2.99 (td, 1H, J1 = 10.9 Hz,

J2 = 4.6 Hz, H-19β); 4.48 (dd, 1H, J1 = 8.2 Hz, J2 = 6.0 Hz, H-3α); 4.75 (s, 1H, H-29 pro-E); 5.00

(AB-system, 2H, JGEM = 15.5 Hz, H-30); 5.10 (s, 1H, H-29 pro-Z); 7.34 (t, 1H, J = 7.2 Hz, H-

36); 7.43 (t, 2H, J = 7.2 Hz, H-35, 37); 7.77 (s, 1H, H-31); 7.84 (d, 2H, J = 7.2 Hz, H-34, 38). 13C

NMR (125 MHz, CDCl3): δ = 14.63; 16.02; 16.15; 16.44; 18.10; 20.90; 21.29; 23.64; 26.84; 27.92;

29.60; 29.66; 31.92; 34.18; 36.61; 37.07; 37.76; 38.29; 38.34; 40.66; 42.35; 43.29; 50.27; 50.40;

54.75; 55.34; 56.28; 80.88; 112.03; 120.02; 125.74; 128.17; 128.81; 130.53; 147.97; 149.48; 171.06;

181.39. MS (ESI+): m/z (%) = 642 (100, [M+H]+), 664 (75, [M+Na]+). MS (ESI-): m/z (%) =

640 (100, [M-H]-). HRMS (ESI-) m/z calcd for C40H55N3O4 [M-H]- 640.4109, found 640.4098.

Compound 9b was obtained from 150 mg (0.28 mmol) of 6 by the general procedure using

2 equiv. of alkyne at r.t. while reaction time was 19 h. The yield of white crystals was 160 mg

(86%): mp 161–165˚C (hexane). IR (DRIFT): 2600–3400, 1720, 1450 cm-1. 1H NMR (500

MHz, CDCl3): δ 0.82 (s, 3H); 0.84 (s, 6H); 0.91 (s, 3H); 0.97 (s, 3H, H-23, 24, 25, 26, 27); 1.77

(t, 1H, J = 11.4 Hz); 1.96 (dd, 1H, J1 = 8.0 Hz, J2 = 4.4 Hz); 2.05 (s, 3H, Ac); 2.15 (td, 1H, J1 =

12.2 Hz, J2 = 3.1 Hz); 2.29 (d, 1H, J = 12.5 Hz); 2.99 (td, 1H, J1 = 10.6 Hz, J2 = 4.2 Hz, H-19β);

4.47 (dd, 1H, J1 = 10.4 Hz, J2 = 4.9 Hz, H-3α); 4.75 (s, 1H, H-29 pro-E); 5.05 (t, 2H, J = 4.7 Hz,

H-30); 5.12 (s, 1H, H-29 pro-Z); 7.54 (t, 1H, J = 8.0 Hz); 7.66 (t, 1H, J = 7.3 Hz); 7.72 (d, 1H,

J = 7.8 Hz); 7.86 (s, 1H, H-31); 8.03 (d, 1H, J = 7.8 Hz, H-35, 36, 37, 38); 10.38 (s, 1H, H-39).
13C NMR (125 MHz, CDCl3): δ = 14.28; 15.67; 15.81; 16.10; 17.74; 20.54; 20.98; 23.29; 26.56;

27.57; 29.24; 31.55; 33.82; 36.24; 36.72; 37.41; 37.94; 37.99; 40.29; 40.90; 41.99; 42.81; 49.90;

50.07; 53.39; 54.97; 55.99; 56.26; 80.53; 111.95; 123.42; 128.34; 128.49; 129.74; 132.69; 133.44;

144.50; 148.97; 170.78; 181.08; 192.00. MS (ESI+): m/z (%) = 670 (100, [M+H]+), 692 (21,

[M+Na]+). HRMS (ESI+) m/z calcd for C41H55N3O5 [M+H]+ 670.4214, found 670.4211.

Compound 9c was obtained from 150 mg (0.28 mmol) of 6 by the general procedure using

2 equiv. of alkyne at r.t. while reaction time was 24 h. The yield of white crystals was 131 mg

(73%): mp 193–196˚C (hexane). IR (DRIFT): 2600–3400, 1721, 1461 cm-1. 1H NMR (500

MHz, CDCl3, referenced to TMS): δ 0.76 (d, 1H, J = 10.3 Hz, H-5); 0.80 (s, 3H, H-24); 0.82 (s,

3H, H-26); 0.83 (s, 3H, H-23); 0.90 (s, 3H, H-25); 0.94 (m, 1H, H-1a); 0.95 (s, 3H, H-27); 1.07

(d, 1H, J = 12.4 Hz, H-12); 1.18 (dt, 1H, J1 = 13.4 Hz, J2 = 2.9 Hz, H-21a); 1.23 (m, 1H, H-2a);

1.24 (m, 1H, H-9); 1.34, (m, 1H, H-6a); 1.36 (m, 2H, H-7); 1.36 (m, 1H, J = 13.0 Hz, H-15a);

1.41 (m, 1H, H-2b); 1.42 (m, 1H, 12.4 Hz, H-12b); 1.44 (dd, 1H, J1 = 12.6 Hz, J2 = 2.6, H-16a);

1.48 (m, 1H, H-6b); 1.51 (q, 1H, J = 13.2 Hz, H-22a); 1.53 (m, 1H, J = 12.5 Hz, H-11a); 1.53 (q,

1H, J = 13.4 Hz, H-21b); 1.62 (m, 1H, J = 12.5 Hz, H-11b); 1.63 (dd, 1H, J1 = 13.0 Hz, J2 = 3.5
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Hz, H-1b); 1.73 (t, 1H, J = 11.4 Hz, H-18); 1.93 (m, 1H, J = 13.2 Hz, H-22b); 2.02 (s, 3H, Ac);

2.03 (m, 1H, ∑J = 13.0 Hz, H-15b); 2.18 (td, 1H, J1 = 12.0 Hz, J2 = 3.0 Hz, H-13); 2.28 (td, 1H,

J1 = 12.6 Hz, J2 = 2.6, H-16b); 3.00 (td, 1H, J1 = 11.1 Hz, J2 = 4.5 Hz, H-19β); 4.45 (m, 1H, J1 =

11.0 Hz, J2 = 5.0 Hz, H-3α); 4.69 (s, 1H, H-29 pro-E); 4.96 (d, 1H, J = 15.6 Hz, H-30a); 5.04 (d,

1H, J = 15.6 Hz, H-30b); 5.07 (s, 1H, H-29 pro-Z); 7.24 (td, 1H, J1 = 6.2 Hz, J2 = 1.0 Hz, H-36);

7.79 (td, 1H, J1 = 7.8 Hz, J2 = 1.7 Hz, H-37); 8.20 (dt, 1H, J1 = 7.9 Hz, J2 = 1.0 Hz, H-38); 8.20

(s, 1H, H-31); 8.58 (dq, 1H, J1 = 4.9 Hz, J2 = 0.8 Hz, H-35). 13C NMR (125 MHz, CDCl3): δ =

14.73 (C27); 16.14 (C25); 16.25 (C26); 16.55 (C24); 18.22 (C6); 21.01 (C2); 21.39 (Ac, CH3);

23.76 (C11); 26.91 (C12); 28.02 (C23); 29.72 (C21); 32.04 (C15); 32.11 (C16); 34.32 (C7); 36.82

(C22); 37.19 (C10); 37.87 (C4); 38.39 (C13); 38.46 (C1); 40.78 (C8); 42.48 (C14); 43.66 (C19);

50.38 (C9); 50.63 (C18); 54.72 (C30); 55.45 (C5); 56.35 (C17); 80.98 (C3); 112.19 (C29); 120.59

(C38); 122.83 (C31); 123.09 (C36); 137.36 (C37); 148.23 (C32); 149.20 (C35); 149.39 (C33);

150.11 (C20); 171.17 (Ac, C = O); 180.72 (C28). MS (ESI+): m/z (%) = 643 (100, [M+H]+), 665

(15, [M+Na]+). HRMS (ESI+) m/z calcd for C39H54N4O4 [M+H]+ 643.4218, found 643.4220.

Compound 9d was obtained from 150 mg (0.28 mmol) of 6 by the general procedure using

2 equiv. of alkyne at r.t. while reaction time was 28 h. The yield of white crystals was 135 mg

(76%): mp 176–179˚C (cyclohexane). IR (DRIFT): 2500–3400, 1723, 1451 cm-1. 1H NMR (500

MHz, CDCl3, referenced to TMS): δ 0.76 (d, 1H, J = 10.3 Hz, H-5); 0.80 (s, 3H, H-24); 0.81 (s,

3H, H-25); 0.82 (s, 3H, H-23); 0.90 (s, 3H, H-26); 0.95 (m, 1H, H-1a); 0.96 (s, 3H, H-27); 1.09

(dd, 1H, J1 = 12.4 Hz, J2 = 4.6 Hz, H-12a); 1.18 (dt, 1H, J1 = 13.4 Hz, J2 = 2.9 Hz, H-21a); 1.24

(m, 1H, H-6a); 1.25 (m, 1H, H-2a); 1.25 (m, 1H, H-9); 1.26 (m, 1H, H-15a); 1.36 (m, 2H, H-7);

1.36 (m, 1H, J = 12.4 Hz, H-12b); 1.38 (m, 1H, H-2b); 1.40 (dd, 1H, J1 = 12.5 Hz, J2 = 3.6 Hz,

H-6b); 1.42 (m, 1H, H-16a); 1.49 (m, 1H, H-22a); 1.53 (m, 1H, H-21b); 1.54 (m, 1H, J = 12.5

Hz, H-11a); 1.62 (m, 1H, J = 12.5 Hz, H-11b); 1.64 (dd, 1H, J1 = 13.0 Hz, J2 = 3.5 Hz, H-1b);

1.75 (t, 1H, J = 11.4 Hz, H-18); 1.93 (m, 1H, J = 13.2 Hz, H-22b); 1.96 (m, 1H, H-15b); 2.02 (s,

3H, Ac); 2.22 (td, 1H, J1 = 12.0 Hz, J2 = 3.0 Hz, H-13); 2.30 (td, 1H, J1 = 12.6 Hz, J2 = 2.6 Hz,

H-16; 2.97 (td, 1H, J1 = 11.1 Hz, J2 = 4.5 Hz, H-19β); 4.45 (dd, 1H, J1 = 10.5 Hz, J2 = 5.2 Hz, H-

3α); 4.82 (s, 1H, H-29 pro-E); 5.00 (d, 1H, J = 15.6 Hz, H-30a); 5.04 (d, 1H, J = 15.6 Hz, H-29

pro-Z); 5.11 (s, 1H, H-29b); 7.39 (m, 1H, J = 7.8 Hz, H-37); 7.92 (s, 1H, H-31); 8.28 (dt, 1H,

J1 = 8.0 Hz, J2 = 1.8 Hz, H-38); 8.55 (dd, 1H, J1 = 4.9 Hz, J2 = 1.0 Hz, H-36); 8.98 (d, 1H, J = 1.5

Hz, H-34). 13C NMR (125 MHz, CDCl3): δ = 14.73 (C27); 16.15 (C26); 16.27 (C25); 16.56

(C24); 18.23 (C6); 21.07 (C2); 21.39 (Ac, CH3); 23.76 (C11); 27.22 (C12); 28.02 (C23); 29.76

(C21); 32.21 (C16); 32.31 (C15); 34.34 (C7); 36.79 (C22); 37.20 (C10); 37.88 (C4); 38.32 (C13);

38.49 (C1); 40.80 (C8); 42.49 (C14); 43.11 (C19); 50.44 (C9); 50.84 (C18); 55.47 (C5); 55.59

(C30); 56.33 (C17); 80.97 (C3); 112.29 (C29); 120.71 (C31); 124.14 (C37); 127.24 (C33); 133.73

(C38); 144.64 (C32); 146.37 (C34); 148.48 (C36); 149.65 (C20); 171.14 (Ac, C = O); 180.15

(C28). MS (ESI+): m/z (%) = 643 (100, [M+H]+). HRMS (ESI+) m/z calcd for C39H54N4O4

[M+H]+ 643.4218, found 643.4221.

Compound 9e was obtained from 150 mg (0.28 mmol) of 6 by the general procedure using

2 equiv. of alkyne at r.t. while reaction time was 20 h. The yield of white crystals was 144 mg

(76%): mp 196–198˚C (cyclohexane). IR (DRIFT): 2450–3400, 1731, 1651 cm-1. 1H NMR (500

MHz, CDCl3): δ 0.83 (s, 3H); 0.85 (s, 6H); 0.92 (s, 3H); 0.97 (s, 3H, H-23, 24, 25, 26, 27); 1.76

(t, 1H, J = 11,5 Hz); 1.95 (dd, 1H, J1 = 12.6 Hz, J2 = 8.0 Hz); 2.05 (m, 3H, Ac); 2.18 (m, 1H);

2.29 (m, 1H); 2.99 (s, 7H, Me2N); 2.99 (m, 1H, H-19β); 4.48 (dd, 1H, J1 = 8.2 Hz, J2 = 6.0 Hz,

H-3α); 4.74 (s, 1H, H-29 pro-E); 4.98 (AB-system, 2H, JGEM = 15.5 Hz, H-30); 5.08 (s, 1H, H-

29 pro-Z); 6.77 (s, 1H, aniline); 6.79 (s, 1H, aniline); 7.63 (s, 1H, H-31); 7.70 (s, 1H, aniline);

7.71 (s, 1H, aniline). 13C NMR (125 MHz, CDCl3): δ = 14.62; 16.03; 16.15; 16.45; 18.11; 20.91;

21.29; 23.66; 26.80; 27.93; 29.61; 31.17; 31.87; 31.93; 34.18; 36.62; 37.09; 37.77; 38.27; 38.35;

40.53; 40.66; 42.36; 43.36; 50.28; 50.34; 54.58; 55.34; 56.26; 80.89; 111.87; 112.58; 118.58;
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121.52; 126.69; 148.40; 149.60; 150.37; 171.02; 180.99. MS (ESI+): m/z (%) = 485 (100, [M+H]+).

HRMS (ESI+) m/z calcd for C42H60N4O4 [M+H]+ 685.4687, found 685.4687.

Compound 9f was obtained from 150 mg (0.28 mmol) of 6 by the general procedure using

1 equiv. of alkyne at r.t. while reaction time was 20 h. The yield of white crystals was 165 mg

(85%): mp 193–196˚C (hexane). IR (DRIFT): 2600–3500, 1724, 1655 cm-1. 1H NMR (500

MHz, CDCl3): δ 0.83 (s, 3H); 0.85 (s, 6H); 0.92 (s, 3H); 0.98 (s, 3H, H-23, 24, 25, 26, 27); 1.35

(s, 9H, H-t-Bu); 1.78 (t, 1H, J = 11.4 Hz); 2.05 (s, 3H, Ac); 2.17 (td, 1H, J1 = 12.5 Hz, J2 = 2.6

Hz); 2.30 (dt, 1H, J1 = 13.0 Hz, J2 = 3.1 Hz); 2.99 (td, 1H, J1 = 10.9 Hz, J2 4.2 Hz, H-19β); 4.48

(dd, 1H, J1 = 10.4 Hz, J2 = 4.7 Hz, H-3α); 4.74 (s, 1H, H-29 pro-E); 5.00 (AB-system, 2H, JGEM

= 16.6 Hz, H-30); 5.09 (s, 1H, H-29 pro-Z); 7.46 (d, 2H, J = 8.8 Hz, H-35, 37); 7.74 (s, 1H, H-

31); 7.78 (d, 2H, J = 8.3 Hz, H-34, 38). 13C NMR (125 MHz, CDCl3): δ = 14.62; 16.02; 16.14;

16.44; 18.10; 20.90; 21.31; 23.65; 26.83; 27.91; 29.60; 29.68; 31.26; 31.92; 34.16; 34.64; 36.59;

37.08; 37.76; 38.27; 38.34; 40.64; 42.34; 43.22; 50.25; 50.36; 54.76; 55.33; 56.27; 80.87; 111.86;

119.74; 125.47; 125.72; 127.70; 147.93; 149.53; 151.29; 171.06; 181.43. MS (ESI-): m/z (%) = 696

(100, [M-H]-). HRMS (ESI-) m/z calcd for C44H63N3O4 [M-H]- 696.4735, found 696.4723.

Compound 9g was obtained from 150 mg (0.28 mmol) of 6 by the general procedure using

1 equiv. of alkyne at 50˚C while reaction time was 18 h. The yield of white crystals was 147 mg

(83%): mp 158–159˚C (hexane). IR (DRIFT): 2600–3400, 1726, 1661 cm-1. 1H NMR (500

MHz, CDCl3): δ 0.83 (s, 3H); 0.85 (s, 6H); 0.91 (s, 3H); 0.94 (s, 3H, H-23, 24, 25, 26, 27); 1.67

(m, 8H, H-34, 35, 36, 37) 2.05 (s, 3H, Ac); 2.29 (d, 1H, J = 12.9 Hz); 2.95 (td, 1H, J1 = 10.9 Hz,

J2 = 4.3 Hz, H-19β); 3.21 (t, 1H, J = 8.3 Hz, H-33); 4.48 (dd, 1H, J1 = 10.9 Hz, J2 = 5.2 Hz, H-

3α); 4.69 (s, 1H, H-29 pro-E); 4.91 (AB-system, 2H, JGEM = 15.8 Hz, H-30); 5.05 (s, 1H, H-29

pro-Z); 7.26 (s, 1H, H-31). 13C NMR (125 MHz, CDCl3): δ = 14.59; 14.62; 15.99; 16.03; 16.12;

16.16; 16.46; 18.10; 20.90; 21.28; 23.65; 25.11; 26.68; 27.93; 29.59; 29.66; 31.90; 33.26; 34.18;

36.61; 36.68; 37.07; 37.76; 38.24; 28.36; 40.64; 42.34; 43.26; 50.20; 54.47; 55.34; 56.27; 80.87;

111.89; 120.05; 149.61; 152.93; 171.04; 180.94. MS (ESI-): m/z (%) = 632 (100, [M-H]-). HRMS

(ESI-) m/z calcd for C39H59N3O4 [M-H]- 632.4422, found 632.4414.

Compound 9h was obtained from 300 mg (0.56 mmol) of 6 by the general procedure using

2 equiv. of alkyne at r.t. while reaction time was 30 h. The yield of white crystals was 33 mg

(10%): mp 178–184˚C (cyclohexane). IR (DRIFT): 3650, 2600–3500, 1726, 1643 cm-1. 1H

NMR (500 MHz, CDCl3): δ 0.84 (s, 3H); 0.85 (s, 6H); 0.93 (s, 3H); 0.97 (s, 3H, H-23, 24, 25, 26,

27); 2.05 (s, 3H, Ac); 2.30 (bd, 1H, J = 12.9 Hz); 2.95 (m, 1H, H-19β); 4.48 (dd, 1H, J1 = 10.9

Hz, J2 = 5.2 Hz, H-3α); 4.70 (s, 1H, H-29 pro-E); 4.85–5.20 (m, 2H, CH2-NH2); 5.03 (AB-sys-

tem, 2H, JGEM = 15.8 Hz, H-30); 5.13 (s, 1H, H-29 pro-Z); 8.13 (s, 1H, H-31); 10.17 (s, NH2).
13C NMR (125 MHz, CDCl3): δ = 14.61; 16.01; 16.17; 16.46; 18.12; 20.90; 21.29; 23.65; 27.05;

27.93; 29.58; 31.97; 34.22; 36.20; 37.10; 37.79; 38.23; 38.39; 40.69; 42.37; 43.11; 50.29; 50.84;

55.34; 55.38; 56.33; 64.17; 77.20; 80.82; 112.57; 125.64; 132.51; 148.84; 171.02; 185.11. MS (ESI

+): m/z (%) = 595 (100, [M+H]+). HRMS (ESI+) m/z calcd for C35H54N4O4 [M+H]+ 595.4218,

found 595.4220.

Silylated compounds 10a–10g. Compound 10a was obtained from 150 mg (0.20 mmol)

of 7 by the general procedure using 1 equiv. of alkyne at 50˚C while reaction time was 20 h.

The yield of white crystals was 157 mg (92%): mp 164–166˚C (cyclohexane). IR (DRIFT):

2600–3400, 1734, 1652 cm-1. 1H NMR (500 MHz, CDCl3): δ 0.83 (s, 3H); 0.89 (s, 3H); 0.90 (s,

3H); 0.92 (s, 3H); 0.96 (s, 3H, H-23, 24, 25, 26, 27); 2.15 (dd, 1H, J1 = 12.5 Hz, J2 = 3.1 Hz); 2.29

(d, 1H, J = 12.5 Hz); 3.00 (td, J1 = 10.9 Hz, J2 = 4.4 Hz, 1H, H-19β); 3.34 (dd, 1H, J1 = 11.9 Hz,

J2 = 4.2 Hz, H-3α); 4.70 (s, 1H, H-29 pro-E); 4.99 (AB-system, 2H, JGEM = 15.6 Hz, H-30); 5.07

(s, 1H, H-29 pro-Z); 7.31–7.46 (m, 12H, H-35, 36, 37, 3 × Ph); 7.66 (dd, 6H, J1 = 7.8 Hz, J2 = 1.3

Hz, 3 × Ph); 7.75 (s, 1H, H-31); 7.84 (d, 2H, J = 8.3 Hz, H-34, 38). 13C NMR (125 MHz,

CDCl3): δ = 14.66; 15.98; 16.10; 16.32; 18.35; 20.82; 26.81; 27.88; 28.42; 29.56; 31.81; 31.90;
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34.21; 36.59; 36.95; 38.27; 28.52; 39.54; 40.59; 42.33; 43.38; 50.20; 50.31; 54.55; 55.16; 56.25;

81.08; 111.91; 120.01; 125.73; 127.67; 128.15; 128.80; 129.70; 130.53; 135.32; 135.53; 147.95;

149.43; 181.32. MS (ESI-): m/z (%) = 856 (100, [M-H]-). HRMS (ESI-) m/z calcd for

C56H67N3O3Si [M-H]- 856.4868, found 856.4849.

Compound 10b was obtained from 150 mg (0.20 mmol) of 7 by the general procedure

using 2 equiv. of alkyne at r.t. while reaction time was 22 h. The yield of white crystals was 148

mg (84%): mp 161–163˚C (cyclohexane). IR (DRIFT): 2600–3400, 1724, 1642 cm-1. 1H NMR

(500 MHz, CDCl3): δ 0.83 (s, 3H); 0.88 (s, 3H); 0.90 (s, 3H); 0.92 (s, 3H); 0.96 (s, 3H, H-23, 24,

25, 26, 27); 2.14 (td, 1H, J1 = 12.6 Hz, J2 = 2.6 Hz); 2.29 (d, 1H, J = 12.6 Hz); 2.99 (td, J1 = 10.9

Hz, J2 = 4.3 Hz, 1H, H-19β); 3.34 (dd, 1H, J1 = 11.7 Hz, J2 = 4.3 Hz, H-3α); 4.75 (s, 1H, H-29

pro-E); 5.04 (AB-system, 2H, JGEM = 15.8 Hz, H-30); 5.10 (s, 1H, H-29 pro-Z); 7.34–7.45 (m,

9H, 3 × Ph); 7.51 (t, 1H, J = 7.7 Hz, H-36); 7.62 (m, 1H, H-37); 7.66 (m, 6H, 3 × Ph); 7.72 (d,

1H, J = 8.6 Hz, H-38); 7.83 (s, 1H, H-31); 8.03 (d, 2H, J = 8.9 Hz, H-35); 10.38 (s, 1H, H-39).
13C NMR (125 MHz, CDCl3): δ = 14.67; 15.98; 16.11; 16.32; 18.36; 20.84; 22.63; 26.87; 27.88;

28.43; 29.56; 31.56; 31.89; 34.23; 36.58; 38.29; 38.54; 39.54; 40.60; 42.35; 43.28; 50.22; 54.37;

54.78; 55.18; 56.27; 81.08; 112.24; 119.89; 123.71; 127.67; 128.63; 128.83; 129.70; 130.07; 133.05;

133.72; 133.84; 135.34; 135.53; 144.83; 149.30; 192.27. MS (ESI+): m/z (%) = 886 (100, [M

+H]+), 908 (8, [M+Na]+). HRMS (ESI+) m/z calcd for C57H67N3O4Si [M+H]+ 886.4974, found

886.4975.

Compound 10c was obtained from 150 mg (0.20 mmol) of 7 by the general procedure

using 2 equiv. of alkyne at r.t. while reaction time was 26 h. The yield of white crystals was 130

mg (75%): mp 197–200˚C (cyclohexane). IR (DRIFT): 2600–3400, 1718, 1641 cm-1. 1H NMR

(500 MHz, CDCl3): δ 0.82 (s, 3H); 0.88 (s, 3H); 0.89 (s, 3H); 0.92 (s, 3H); 0.95 (s, 3H, H-23, 24,

25, 26, 27); 2.17 (t, 1H, J = 11.7 Hz); 2.28 (d, 1H, J = 11.7 Hz); 3.01 (td, 1H, J1 = 10.4 Hz, J2 =

6.5 Hz, H-19β); 3.33 (dd, 1H, J1 = 12.2 Hz, J2 = 3.6 Hz, H-3α); 4.66 (s, 1H, H- 29 pro-E); 5.01

(AB-system, 2H, JGEM = 15.8 Hz, H-30); 5.06 (s, 1H, H-29 pro-Z); 7.24 (m, 1H, H-36); 7.36–

7.45 (m, 9H, 3 × Ph); 7.65 (d, 6H, J = 6.5 Hz, 3 × Ph); 7.79 (t, 1H, J = 7.8 Hz, H-35); 8.19 (s, 1H,

H-31); 8.21 (d, 1H, J = 8.8 Hz, H-37); 8.59 (d, 1H, J = 4.7 Hz, H-34). 13C NMR (125 MHz,

CDCl3): δ = 14.65; 15.99; 16.10; 16.33; 18.36; 20.81; 26.79; 27.87; 28.42; 29.68; 31.56; 32.00;

34.23; 36.70; 36.95; 38.24; 38.49; 39.53; 40.59; 42.33; 43.54; 50.19; 50.43; 54.52; 55.16; 56.21;

81.09; 111.83; 119.88; 122.69; 127.50; 127.67; 129.70; 135.32; 136.30; 137.21; 142.18; 148.13;

149.09; 149.98, 181.13. MS (ESI+): m/z (%) = 859 (100, [M+H]+), 881 (12, [M+Na]+). HRMS

(ESI+) m/z calcd for C55H66N4O3Si [M+H]+ 859.4977, found 859.4977.

Compound 10d was obtained from 150 mg (0.20 mmol) of 7 by the general procedure

using 2 equiv. of alkyne at r.t. while reaction time was 36 h. The yield of white crystals was 131

mg (77%): mp 202–204˚C (cyclohexane). IR (DRIFT): 2650–3450, 1729, 1646 cm-1. 1H NMR

(500 MHz, CDCl3): δ 0.82 (s, 3H); 0.88 (s, 3H); 0.89 (s, 3H); 0.91 (s, 3H); 0.93 (s, 3H); 0.95 (s,

3H, H-23, 24, 25, 26, 27); 2.30 (d, 1H, J = 12.6 Hz); 2.98 (td, 1H, J1 = 10.6 Hz, J2 = 4.0 Hz, H-

19β); 3.33 (dd, 1H, J1 = 11.7 Hz, J2 = 4.0 Hz, H-3α); 4.79 (s, 1H, H-29 pro-E); 5.01 (AB-system,

2H, JGEM = 16.6 Hz, H-30); 5.10 (s, 1H, H-29 pro-Z); 7.36–7.45 (m, 9H, 3 × Ph); 7.65 (d, 6H,

3 × Ph); 7.89 (s, 1H, H-31); 8.28 (d, 1H, J = 7.7 Hz, H-37); 8.57 (d, 1H, J = 3.7 Hz, H-35); 8.99

(s, 1H, H-34). 13C NMR (125 MHz, CDCl3): δ = 14.67; 16.01; 16.13; 16.34; 18.39; 20.91; 27.11;

27.89; 28.44; 29.62; 32.07; 32.13; 34.27; 36.66; 36.99; 38.21; 28.56; 39.55; 40.65; 42.38; 43.02;

50.27; 50.72; 55.20; 55.40; 56.19; 81.10; 112.12; 120.54; 123.97; 127.07; 127.68; 129.70; 133.51;

135.35; 135.54; 144.57; 146.40; 148.50; 149.52; 181.13. MS (ESI+): m/z (%) = 859 (100, [M+H]+),

881 (7, [M+Na]+). HRMS (ESI+) m/z calcd for C55H66N4O3Si [M+H]+ 859.4977, found

859.4974.

Compound 10e was obtained from 150 mg (0.20 mmol) of 7 by the general procedure using

2 equiv. of alkyne at r.t. while reaction time was 24 h. The yield of white crystals was 128 mg
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(72%): mp 194–196˚C (cyclohexane). IR (DRIFT): 2600–3400, 1724, 1652 cm-1. 1H NMR

(500 MHz, CDCl3, referenced to TMS): δ 0.53 (d, 1H, J = 10.3 Hz, H-5); 0.64 (td, 1H, J1 = 13.2

Hz, J2 = 3.5 Hz, H-1a); 0.82 (s, 3H, H-25); 0.86 (s, 3H, H-24); 0.88 (s, 3H, H-27); 0.92 (s, 3H, H-

26); 0.94 (s, 3H, H-23); 1.02 (qd, 1H, J1 = 12.4 Hz, J2 = 3.8 Hz, H-12a); 1.16 (t, 1H, J = 12.5 Hz,

H-9); 1.19 (dd, 1H, J1 = 13.4 Hz, J2 = 2.9 Hz, H-21a); 1.28 (m, 1H, J = 12.5 Hz, H-2a); 1.31 (m,

2H, H-7); 1.33 (m, 1H, H-6a); 1.38 (m, 1H, J = 12.4 Hz, H-12b); 1.41 (dd, 1H, J1 = 12.5 Hz, J2 =

2.2 Hz, H-2b); 1.44 (m, 1H, H-15a); 1.45 (m, 1H, J = 12.6 Hz, H-16a); 1.49 (m, 1H, J = 13.5 Hz,

H-22a); 1.50 (mm, 4H, H-11a, H-1, 6, 21b); 1.74 (t, 1H, J = 11.4 Hz, H-18); 1.74 (m, 1H, H-

11b); 1.92 (m, 1H, J = 13.5 Hz, H-22b); 1.99 (m, 1H, J = 13.0 Hz, H-15b); 2.13 (td, 1H, J1 = 12.0

Hz, J2 = 3.0 Hz, H-13); 2.26 (dt, 1H, J1 = 12.6 Hz, J2 = 2.6 Hz, H-16b); 2.95 (td, 1H, J1 = 11.1

Hz, J2 = 4.5 Hz, H-19β); 2.98 (s, 6H, H-40, 41); 3.32 (dd, 1H, J1 = 11.0 Hz, J2 = 5.0 Hz, H-3α);

4.67 (s, 1H, H-29 pro-E); 4.94 (m, 2H, H-30); 5.03 (s, 1H, H-29 pro-Z); 6.80 (br, 2H, H-35, 37);

7.36 (t, 6H, J = 7.2 Hz, H-3´,3´´a,b,c); 7.42 (tt, 3H, J1 = 7.2 Hz, J2 = 1.5 Hz, H-4´a,b,c); 7.60 (s,

1H, H-31); 7.63 (d, 6H, J = 7.2 Hz, H-2´,2´´a,b,c); 7.69 (d, 2H, J = 8.2 Hz, H-34,38). 13C NMR

(125 MHz, CDCl3): δ = 14.79 (C27); 16.11 (C26); 16.22 (C25); 16.44 (C24); 18.46 (C6); 20.97

(C2); 26.92 (C12); 28.00 (C11); 28.54 (C23); 29.70 (C21); 31.96 (C15); 32.05 (C16); 34.36 (C7);

36.71 (C22); 37.10 (C10); 38.38 (C13); 38.66 (C1); 39.67 (C4); 40.74 (C8); 40.86 (C40,C41);

42.47 (C14); 43.41 (C19); 50.34 (C18); 50.43 (C9); 54.65 (C29); 56.30 (C5); 56.32 (C17); 91.22

(C3); 111.62 (C29); 112.95 (C35, 37); 118.76 (C31); 122.23 (C33); 126.84 (C34,C38); 127.77

(Ca,b,c3´,3´´); 129.81 (Ca,b,c4´); 135.46 (Ca,b,c1´,1´´); 135.64 (Ca,b,c2´,2´´); 148.42 (C32);

149.70 (C20); 150.21 (C36); 180.72 (C28). MS (ESI+): m/z (%) = 901 (100, [M+H]+), 923 (6,

[M+Na]+). HRMS (ESI+) m/z calcd for C58H72N4O3Si [M+H]+ 901.5446, found 901.5441.

Compound 10f was obtained from 150 mg (0.20 mmol) of 7 by the general procedure using

1 equiv. of alkyne at r.t. while reaction time was 24 h. The yield of white crystals was 147 mg

(81%): mp 195–197˚C (cyclohexane). IR (DRIFT): 2600–3400, 1717, 1639 cm-1. 1H NMR (500

MHz, CDCl3): δ 0.84 (s, 3H); 0.89 (s, 3H); 0.90 (s, 3H); 0.95 (s, 3H); 0.96 (s, 3H, H-23, 24, 25,

26, 27); 1.35 (s, 9H, H-40, 41, 42); 1.76 (t, 2H, J = 1.2 Hz); 2.15 (td, 1H, J1 = 12.6 Hz, J2 = 2.9

Hz); 2.29 (d, 1H, J = 12.9 Hz); 2.98 (td, 1H, J1 = 11.2 Hz, J2 = 4.9 Hz, H-19β); 3.35 (dd, 1H, J1 =

11.7 Hz, J2 = 4.3 Hz, H-3α); 4.69 (s, 1H, H-29 pro-E); 4.98 (s, 2H, H-30); 5.05 (s, 1H, H-29 pro-
Z); 7.37–7.47 (m, 11H, H-35, 37, 3 × Ph); 7.66 (d, 6H, J = 6.6 Hz, 3 × Ph); 7.78 (d, 2H, H-34,

38). 13C NMR (125 MHz, CDCl3): δ = 14.68; 16.00; 16.11; 16.33; 18.36; 20.84; 26.82; 27.89;

28.43; 29.58; 29.67; 31.26; 31.93; 34.22; 34.63; 36.59; 36.98; 38.26; 38.52; 39.55; 40.60; 42.34;

43.22; 50.21; 50.34; 54.37; 54.67; 55.18; 56.24; 81.09; 111.63; 119.73; 125.46; 125.71; 127.67;

129.70; 135.34; 135.52; 147.91; 149.58; 151.27; 181.28. MS (ESI+): m/z (%) = 914 (100,

[M+H]+), 937 (75, [M+Na]+). HRMS (ESI+) m/z calcd for C60H75N3O3Si [M+H]+ 914.5650,

found 914.5650.

Compound 10g was obtained from 150 mg (0.20 mmol) of 7 by the general procedure

using 1 equiv. of alkyne at 50˚C while reaction time was 15 h. The yield of white crystals was

148 mg (88%): mp 146–148˚C (cyclohexane). IR (DRIFT): 2650–3400, 1730, 1452 cm-1. 1H

NMR (500 MHz, CDCl3): δ 0.84 (s, 3H); 0.89 (s, 9H); 0.96 (s, 3H, H-23, 24, 25, 26, 27); 2.29 (d,

1H, J = 11.5 Hz); 2.97 (t, 1H, J = 12.9 Hz, H-33); 3.21 (td, 1H, J1 = 15.5 Hz, J2 = 7.7 Hz, H-19β);

3.34 (d, 1H, J = 10.9 Hz, H-3α); 4.65 (s, 1H, H-29 pro-E); 4.89 AB-system, 2H, JGEM = 15.8 Hz,

H-30); 5.03 (s, 1H, H-29 pro-Z); 7.25 (s, 1H, H-31); 7.37–7.45 (m, 9H, 3 × Ph); 7.66 (d, 6H,

J = 8.0 Hz, 3 × Ph). 13C NMR (125 MHz, CDCl3): δ = 14.65; 15.99; 16.10; 16.32; 18.37; 20.82;

25.11; 26.66; 27.89; 28.42; 29.58; 29.66; 31.76; 31.93; 33.23; 34.23; 36.69; 36.97; 38.20; 38.53;

39.53; 40.58; 42.32; 43.47; 50.11; 50.22; 54.19; 55.20; 56.29; 81.11; 111.92; 120.00; 127.65;

129.68; 135.32; 135.50; 149.62; 152.89; 181.13. MS (ESI+): m/z (%) = 850 (100, [M+H]+).

HRMS (ESI+) m/z calcd for C55H71N3O3Si [M+H]+ 850.5337, found 850.5334.
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Unprotected compounds 11a–11g. Compound 11a was obtained from 150 mg (0.17

mmol) of 10a by the general deprotection procedure 1 at 60˚C for 18 h. The yield of white crys-

tals was 143 mg (79%): mp 137–138˚C (CH2Cl2). IR (DRIFT): 2600–3400, 1724, 1650 cm-1. 1H

NMR (500 MHz, CDCl3): δ 0.76 (s, 3H); 0.82 (s, 3H); 0.92 (s, 3H); 0.98 (s, 6H, H-23, 24, 25, 26,

27); 2.18 (dd, 1H, J1 = 13.5 Hz, J2 = 3.4 Hz); 2.30 (d, 1H, J = 12.7 Hz); 3.00 (td, 1H, J1 = 11.2 Hz,

J2 = 4.6 Hz, H-19β); 3.21 (dd, 1H, J1 = 11.2 Hz, J2 = 4.9 Hz, H-3α); 4.72 (s, 1H, H-29 pro-E);

5.00 (AB-system, 2H, JGEM = 15.8 Hz, H-30); 5.10 (s, 1H, H-29 pro-Z); 7.34 (tt, 1H, J1 = 7.3 Hz,

J2 = 1.3 Hz, H-36); 7.43 (t, 2H, J = 7.3 Hz, H-35, 37); 7.77 (s, 1H, H-31); 7.84 (d, 2H, J = 7.0 Hz,

H-34, 38). 13C NMR (125 MHz, CDCl3): δ = 14.66; 15.32; 16.01; 16.08; 18.21; 20.89; 26.84;

27.29; 27.94; 29.60; 29.67; 31.86; 31.92; 34.25; 36.62; 37.14; 38.30; 38.66; 38.81; 40.63; 42.36;

43.39; 50.36; 54.59; 55.24; 56.25; 78.95; 111.95; 120.02; 125.74; 128.16; 128.81; 130.54; 147.97;

149.48; 180.97. MS (ESI+): m/z (%) = 600 (100, [M+H]+). HRMS (ESI+) m/z calcd for

C38H53N3O3 [M+H]+ 600.4160, found 600.4162. Note: deprotection procedure 2 at r.t. for 4 h

was also tried with the yield of 76%.

Compound 11b was obtained from 150 mg (0.17 mmol) of 10b by the general deprotection

procedure 1 at r.t. for 32 h. The yield of white crystals was 117 mg (62%): mp 127–129˚C

(CH2Cl2). IR (DRIFT): 2600–3400, 1727, 1453 cm-1. 1H NMR (500 MHz, CDCl3, referenced to

TMS): δ 0.66 (d, 1H, J = 9.0 Hz, H-5); 0.73 (s, 3H, H-25); 0.80 (s, 3H, H-24); 0.88 (m, 1H,

J = 13.2 Hz, H-1a); 0.90 (s, 3H, H-26); 0.95 (s, 3H, H-23); 0.96, (s, 3H, H-27); 1.04 (dd, 1H, J1 =

11.7 Hz, J2 = 4.2 Hz, H-12a); 1.23 (m, 1H, H-9); 1.24 (mm, 2H, H-15, 21a); 1.25 (m, 1H, H-

11a); 1.36 (mm, 2H, H-7); 1.36 (m, 1H, H-6a); 1.38 (m, 1H, H-12b); 1.44 (m, 1H, H-11b); 1.44

(m, 1H, J = 12.2 Hz, H-16a); 1.50 (m, 1H, H-15b); 1.52 (mm, 3H, H-2,6,21b); 1.52 (m, 1H,

J = 13.1 Hz, H-22a); 1.61 (m, 1H, H-2b); 1.63 (m, 1H, J = 13.2 Hz, H-1b); 1.75 (t, 1H, J = 11.4

Hz, H-18); 1.95 (m, 1H, H-22b); 2.16 (td, 1H, J1 = 12.1 Hz, J2 = 3.3 Hz, H-13); 2.28 (dt, 1H, J1 =

12.2 Hz, J2 = 3.1 Hz, H-16b); 2.98 (td, 1H, J1 = 11.1 Hz, J2 = 4.3 Hz, H-19β); 3.18 (dd, 1H, J1 =

11.3 Hz, J2 = 4.7 Hz, H-3α); 4.75 (s, 1H, H-29); 5.00 (d, 1H, J = 15.6 Hz, H-30); 5.06 (d, 1H,

J = 15.6 Hz, H-30b); 5.10 (s, 1H, H-29); 7.51 (tt, 1H, J1 = 7.5 Hz, J2 = 0.8 Hz, H-36); 7.64 (td,

1H, J1 = 7.5 Hz, J2 = 1.5 Hz, H-37); 7.71 (dd, 1H, J1 = 7.8 Hz, J2 = 1.1 Hz, H-38); 7.82 (s, 1H, H-

31); 8.02 (dd, 1H, J1 = 7.8, J2 = 1.2 Hz, H-35); 10.36 (d, 1H, J = 0.5 Hz, H-39). 13C NMR (125

MHz, CDCl3): δ = 14.78 (C27); 15.43 (C25); 16.12 (C26); 16.20 (C24); 18.34 (C6); 21.02 (C11);

27.06 (C12); 27.44 (C2); 28.06 (C23); 29.71 (C21); 29.77 (C15); 32.02 (C16); 34.38 (C7); 36.71

(C22); 37.28 (C10); 38.41 (C13); 38.80 (C1); 38.94 (C4); 40.77 (C8); 42.49 (C14); 43.39 (C19);

50.50 (C18); 50.52 (C9); 54.93 (C30); 55.38 (C5); 56.35 (C17); 79.03 (C3); 112.37 (C29); 123.84

(C31); 128.76 (C36); 128.96 (C35); 130.20 (C38); 133.18 (C33); 133.83 (C37); 133.96 (C34);

144.93 (C32); 149.45 (C20); 180.36 (C28); 192.41 (C39). MS (ESI+): m/z (%) = 628 (100,

[M+H]+). HRMS (ESI-TOF) m/z calcd for C39H53N3O4 [M+H]+ 628.4109, found 628.4111.

Compound 11c was obtained from 150 mg (0.30 mmol) of 10c by the general deprotection

procedure 1 at r.t. for 28 h. The yield of white crystals was 105 mg (58%): mp 141–142˚C

(CH2Cl2). IR (DRIFT): 2500–3450, 1735, 1654 cm-1. 1H NMR (500 MHz, CDCl3): δ 0.76 (s,

3H); 0.82 (s, 3H); 0.92 (s, 3H); 0.97 (s, 3H); 0.98 (s, 3H, H-23, 24, 25, 26, 27); 1.75 (t, 1H,

J = 11.5 Hz); 1.97 (dd, 1H, J1 = 12.6 Hz, J2 = 8.3 Hz); 2.06 (m, 1H); 2.22 (td, 1H, J1 = 13.9 Hz,

J2 = 3.5 Hz); 2.31 (dt, 1H, J1 = 12.5 Hz, J2 = 3.2 Hz); 3.04 (td, 1H, J1 = 11.2 Hz, J2 = 4.9 Hz, H-

19β); 3.21 (dd, 1H, J1 = 11.6 Hz, J2 = 4.9 Hz, H-3α); 4.67 (s, 1H, H-29 pro-E); 5.04 (AB-system,

2H, JGEM = 15.7 Hz, H-30); 5.09 (s, 1H, H-29 pro-Z); 7.26 (m, 1H, H-pyridine); 7.81 (td, 1H,

J1 = 7.7 Hz, J2 = 1.7 Hz, H-pyridine); 8.22 (s, 1H, H-31); 8.22 (m, 1H, H-pyridine); 8.61 (dq,

J1 = 4.9 Hz, J2 = 0.8 Hz, H-pyridine). 13C NMR (125 MHz, CDCl3): δ = 14.66; 15.34; 16.10;

18.23; 20.90; 26.81; 27.31; 27.96; 29.62; 31.17; 31.95; 32.02; 34.29; 36.72; 37.16; 38.28; 38.72;

38.82; 40.66; 42.38; 43.59; 50.39; 50.46; 54.47; 55.27; 56.21; 78.93; 111.81; 120.49; 122.76;

122.97; 137.24; 148.11; 149.07; 149.35; 150.01; 180.18. MS (ESI-): m/z (%) = 599 (100, [M-H]-).

Cytotoxic conjugates of betulinic acid and substituted triazoles

PLOS ONE | DOI:10.1371/journal.pone.0171621 February 3, 2017 14 / 25



HRMS (ESI-) m/z calcd for C37H52N4O3 [M-H]- 599.3956, found 599.3947. Note: deprotection

procedure 2 was also tried with yield of 58% and the attempt to prepare compound 11c from

free azide 8 by the general procedure for click reaction gave the best yield of 74%.

Compound 11d was obtained from 150 mg (0.30 mmol) of 10d by the general deprotection

procedure 1 at r.t. for 28 h. The yield of white crystals was 112 mg (62%): mp 141–142˚C

(CH2Cl2). IR (DRIFT): 2600–3400, 1734, 1645 cm-1. 1H NMR (500 MHz, DMSO): δ 0.64 (s,

3H); 0.75 (s, 3H); 0.85 (s, 3H); 0.87 (s, 3H); 0.93 (s, 3H, H-23, 24, 25, 26, 27); 2.12 (m, 2H) 2.18

(m, 1H); 2.97 (td, 1H, J1 = 10.9 Hz, J2 = 4.3 Hz, H-19β); 3.21 (dd, 1H, J1 = 8.3 Hz, J2 = 3.7 Hz,

H-3α); 4.56 (s, 1H, H-29 pro-E); 5.02 (s, 2H, H-30); 5.05 (s, 1H, H-29 pro-Z); 7.48 (m, 1H, H-

37); 8.23 (td, 1H, J1 = 7.7 Hz, J2 = 2.0 Hz, H-36); 8.54 (dd, 1H, J1 = 4.9 Hz, J2 = 1.7 Hz, H-35);

8.71 (s, 1H, H-31); 9.06 (d, 1H, J = 2.0 Hz, H-34). 13C NMR (125 MHz, CDCl3): δ = 14.65;

15.35; 16.11; 18.24; 20.95; 26.13; 27.09; 27.96; 27.92; 29.05; 29.58; 32.05; 34.31; 36.68; 37.17;

38.11; 38.84; 40.63; 40.86; 42.39; 48.72; 50.43; 50.51; 51.43; 55.29; 56.12; 78.92; 110.77; 120.63;

128.42; 128.55; 132.13; 144.54; 146.36; 148.57; 149.58; 168.10; 178.88. MS (ESI-): m/z (%) =

599 (100, [M-H]-). HRMS (ESI-TOF) m/z calcd for C37H52N4O3 [M-H]- 599.3956, found

599.3945. Note: deprotection procedure 2 was also tried with yield of 60% and the attempt to

prepare compound 11c from free azide 8 by the general procedure for click reaction gave the

best yield of 76%.

Compound 11e was obtained from 150 mg (0.17 mmol) of 10e by the general deprotection

procedure 1 at r.t. for 30 h. The yield of white crystals was 124 g (64%): mp 150–151˚C

(CH2Cl2). IR (DRIFT): 2600–3400, 1731, 1651 cm-1. 1H NMR (500 MHz, CDCl3): δ 0.76 (s,

1H); 0.82 (s, 3H); 0.92 (s, 3H); 0.97 (s, 6H, H-23, 24, 25, 26, 27); 2.30 (d, 1H, J = 9.2 Hz); 2.99

(s, 6H, H-39, 40); 2.99 (m, 1H, H-19β) 3.20 (dd, 1H, J1 = 11.2 Hz, J2 = 4.9 Hz, H-3α); 4.71 (s,

1H, H-29 pro-E); 4.97 (AB-system, 2H, JGEM = 15.5 Hz, H-30); 5.07 (s, 1H, H-29 pro-Z); 6.67

(d, 2H, J = 9.1 Hz, H-34, 38); 7.62 (s, 1H, H-31); 7.70 (d, 2H, J = 8.7 Hz, H-35, 37). 13C NMR

(125 MHz, CDCl3): δ = 14.67; 15.33; 16.04; 16.10; 18.23; 20.92; 26.83; 27.31; 27.96; 29.64; 31.85;

34.28; 36.55; 36.69; 37.18; 38.32; 38.68; 38.84; 40.48; 40.49; 40.66; 42.38; 43.53; 50.39; 54.48;

55.26; 78.96; 111.79; 112.52; 118.61; 118.86; 126.71; 126.90 148.43; 149.65; 150.44; 179.98. MS

(ESI+): m/z (%) = 643 (100, [M+H]+). HRMS (ESI+) m/z calcd for C40H58N4O3 [M+H]+

643.4582, found 643.4583.

Compound 11f was obtained from 150 mg (0.16 mmol) of 10f by the general deprotection

procedure 1 at r.t. for 30 h. The yield of white crystals was 148 mg (75%): mp 141–142˚C

(EtOAc). IR (DRIFT): 2500–3450, 1729, 1647 cm-1. 1H NMR (500 MHz, CDCl3): δ 0.76 (s,

3H); 0.82 (s, 3H); 0.92 (s, 3H); 0.97 (s, 6H, H-23, 24, 25, 26, 27); 2.18 (dd, 1H, J1 = 12.5 Hz, J2 =

2.9 Hz); 2.29 (d, 1H, J = 12.8 Hz); 3.02 (td, 1H, J1 = 10.9 Hz, J2 = 4.6 Hz, H-19β); 3.20 (dd, 1H,

J1 = 11.2 Hz, J2 = 4.7 Hz, H-3α); 4.72 (s, 1H, H-29 pro-E); 5.00 (AB-system, 2H, JGEM = 15.8

Hz, H-30); 5.08 (s, 1H, H-29 pro-Z); 7.45 (d, 2H, J = 8.6 Hz, H-35, 37); 7.73 (s, 1H, H-31); 7.77

(d, 2H, J = 8.6 Hz, H-34, 38). 13C NMR (125 MHz, CDCl3): δ = 14.65; 15.33; 16.02; 16.09;

18.23; 20.92; 26.87; 27.31; 27.95; 29.63; 30.14; 31.27; 31.90; 32.00; 34.26; 34.64; 36.67; 37.15;

38.27; 38.67; 38.82; 40.63; 42.36; 43.31; 43.43; 50.37; 54.71; 55.24; 56.29; 78.95; 111.78; 119.76;

125.47; 125.72; 127.72; 147.93; 149.67; 151.29; 180.99. MS (ESI+): m/z (%) = 456 (100, [M

+H]+), 478 (4, [M+Na]+). HRMS (ESI+) m/z calcd for C42H61N3O3 [M+H]+ 456.4786, found

456.4786. Note: deprotection procedure 2 at r.t. for 4 h was also tried with the yield of 73%.

Compound 11g was obtained from 150 mg (0.18 mmol) of 10g by the general deprotection

procedure 1 at 50˚C for 20 h. The yield of white crystals was 144 mg (81%): mp 127–129˚C

(CHCl3). IR (DRIFT): 2500–3400, 1724, 1652 cm-1. 1H NMR (500 MHz, CDCl3): δ 0.76 (s,

3H); 0.82 (s, 3H); 0.92 (s, 3H); 0.95 (s, 3H); 0.97 (s, 3H, H-23, 24, 25, 26, 27); 2.12 (m, 2H) 2.13

(m, 1H); 2.29 (d, 1H, J = 3.0 Hz); 2.97 (td, 1H, J1 = 10.9 Hz, J2 = 4.3 Hz, H-19β); 3.21 (dd, 1H,

J1 = 8.3 Hz, J2 = 3.7 Hz, H-3α); 4.66 (s, 1H, H-29 pro-E); 4.90 (AB-system, 2H, JGEM = 15.5 Hz,
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H-30); 5.05 (s, 1H, H-29 pro-Z); 7.24 (s, 1H, H-31). 13C NMR (125 MHz, CDCl3): δ = 14.66;

15.33; 16.01; 16.09; 18.20; 20.87; 25.12; 26.67; 27.31; 27.95; 29.61; 31.92; 33.24; 34.28; 36.64;

36.74; 37.16; 38.26; 38.73; 38.82; 40.63; 40.66; 42.36; 43.45; 50.16; 50.37; 54.22; 55.28; 56.29;

78.96; 111.87; 120.02; 149.66; 152.98; 180.95. MS (ESI+): m/z (%) = 592 (100, [M+H]+), 614

(10, [M+Na]+). HRMS (ESI+) m/z calcd for C37H57N3O3 [M+H]+ 592.4473, found 592.4474.

General information about the biological assays

Cell lines. Biological assays were performed in concordance with our previous publica-

tions [29, 58; 60; 61]. All cells (if not indicated otherwise) were purchased from the American

Tissue Culture Collection (ATCC). The CCRF-CEM line is derived from T lymphoblastic leu-

kemia, evincing high chemosenzitivity, K562 represent cells from an acute myeloid leukemia

patient sample with bcr-abl translocation, U2OS line is derived from osteosarcoma, HCT116

is colorectal tumor cell line and its p53 gene knock-down counterpart (HCT116p53-/-, Hori-

zon Discovery Ltd, UK) is a model of human cancers with p53 mutation frequently associated

with poor prognosis, A549 line is lung adenocarcinoma. The daunorubicin resistant subline of

CCRF-CEM cells (CEM-DNR bulk) and paclitaxel resistant subline K562-TAX were selected

in our laboratory by the cultivation of maternal cell lines in increasing concentrations of dau-

norubicine or paclitaxel, respectively. The CEM-DNR bulk cells overexpress MRP-1 and P-

glycoprotein protein, while K562-TAX cells overexpress P-glycoprotein only. Both proteins

belong to the family of ABC transporters and are involved in the primary and/or acquired

multidrug resistance phenomenon [58]. MRC-5 and BJ cell lines were used as a non-tumor

control and represent human fibroblasts. The cells were maintained in nunc/corning 80 cm2

plastic tissue culture flasks and cultured in cell culture medium according to ATCC or Hori-

zon recommendations (DMEM/RPMI 1640 with 5 g/L glucose, 2 mM glutamine, 100 U/mL

penicillin, 100 mg/mL streptomycin, 10% fetal calf serum, and NaHCO3).

Cytotoxic MTS assay. MTS assay was performed at Institute of Molecular and Transla-

tional Medicine by robotic platform (HighResBiosolutions). Cell suspensions were prepared

and diluted according to the particular cell type and the expected target cell density (25000–

35000 cells/mL based on cell growth characteristics). Cells were added by automatic pipetor

(30 μL) into 384 well microtiter plates. All tested compounds were dissolved in 100% DMSO

and four-fold dilutions of the intended test concentration were added in 0.15 μL aliquots at

time zero to the microtiter plate wells by the echoacustic non-contact liquid handler Echo550

(Labcyte). The experiments were performed in technical duplicates and three biological repli-

cates at least. The cells were incubated with the tested compounds for 72 h at 37˚C, in a 5%

CO2 atmosphere at 100% humidity. At the end of the incubation period, the cells were assayed

by using the MTS test. Aliquots (5 μL) of the MTS stock solution were pipetted into each well

and incubated for additional 1–4 h. After this incubation period, the optical density (OD) was

measured at 490 nm with an Envision reader (Perkin Elmer). Tumor cell survival (TCS) was

calculated by using the following equation: TCS = (ODdrug-exposed well/mean ODcontrol wells) ×
100%. The IC50 value, the drug concentration that is lethal to 50% of the tumor cells, was calcu-

lated from the appropriate dose-response curves in Dotmatics software.

Cell cycle and apoptosis analysis. Suspension of CCRF-CEM cells, seeded at a density of

1.106 cells/mL in 6-well panels, were cultivated with the 1 or 5 × IC50 of tested compound in a

humidified CO2 incubator at 37˚C in RPMI 1640 cell culture medium containing 10% fetal

calf serum, 10 mM glutamine, 100 U/mL penicillin, and 100 μg/mL streptomycin. Together

with the treated cells, control sample containing vehicle was harvested at the same time point

after 24 h. After another 24 hours, cells were then washed with cold PBS and fixed in 70% etha-

nol added dropwise and stored overnight at -20˚C. Afterwards, cells were washed in hypotonic
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citrate buffer, treated with RNAse (50 μg/mL) and stained with propidium iodide. Flow cytom-

eter using a 488 nm single beam laser (Becton Dickinson) was used for measurement. Cell

cycle was analyzed in the program ModFitLT (Verity), and apoptosis was measured in loga-

rithmic model expressing percentage of the particles with propidium content lower than cells

in G0/G1 phase (<G1) of the cell cycle. Half of the sample was used for pH3Ser10 antibody

(Sigma) labeling and subsequent flow cytometry analysis of mitotic cells [61].

BrDU incorporation analysis (DNA synthesis). For this analysis, the same procedure

of cultivation as previously was used. Before harvesting, 10 μM 5-bromo-2-deoxyuridine

(BrDU), was added to the cells for puls-labeling for 30 min. Cells were fixed with ice-cold 70%

ethanol and stored overnight. Before the analysis, cellswere washed with PBS, and resuspended

in 2 M HCl for 30 min at room temperature to denature their DNA. Following neutralization

with 0.1 M Na2B4O7 (Borax), cells were washed with PBS containing 0.5% Tween-20 and 1%

BSA. Staining with primary anti-BrDU antibody (Exbio) for 30 min at room temperature in

the dark followed. Cells were than washed with PBS and stained with secondary antimouse-

FITC antibody (Sigma). Cells were then washed with PBS again and incubated with propidium

iodide (0.1 mg/mL) and RNAse A (0.5 mg/mL) for 1 h at room temperature in the dark and

afterwards analyzed by flow cytometry using a 488 nm single beam laser (FACSCalibur, Becton

Dickinson) [61].

BrU incorporation analysis (RNA synthesis). Cells were cultured and treated as above.

Before harvesting, pulse-labeling with 1 mM 5-bromouridine (BrU) for 30 min followed. The

cells were then fixed in 1% buffered paraformaldehyde with 0.05% of NP-40 in room tempera-

ture for 15 min, and then stored in 4˚C overnight. Before measurement, they werewashed in

PBS with 1% glycin, washed in PBS again, and stained by primary anti-BrDU antibody cross-

reacting to BrU (Exbio) for 30 min at room temperature in the dark. After another washing step

in PBS cells were stained by secondary antimouse-FITC antibody (Sigma). Following the stain-

ing, cells were washed with PBS and fixed with 1% PBS buffered paraformaldehyde with 0.05%

of NP-40 for 1 hour. Cells were washed by PBS, incubated with propidium iodide (0.1 mg/mL)

and RNAse A (0.5 mg/mL) for 1 h at room temperature in the dark, and finally analyzed by

flow cytometry using a 488 nm single beam laser (FACS Calibur, Becton Dickinson) [61].
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