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Abstract: Pharmacophore modeling is usually considered as a special type of virtual screening without
probabilistic nature. Correspondence of at least one conformation of a molecule to pharmacophore is
considered as evidence of its bioactivity. We show that pharmacophores can be treated as one-class
machine learning models, and the probability the reflecting model’s confidence can be assigned to
a pharmacophore on the basis of their precision of active compounds identification on a calibration
set. Two schemes (Max and Mean) of probability calculation for consensus prediction based on
individual pharmacophore models were proposed. Both approaches to some extent correspond to
commonly used consensus approaches like the common hit approach or the one based on a logical
OR operation uniting hit lists of individual models. Unlike some known approaches, the proposed
ones can rank compounds retrieved by multiple models. These approaches were benchmarked
on multiple ChEMBL datasets used for ligand-based pharmacophore modeling and externally
validated on corresponding DUD-E datasets. The influence of complexity of pharmacophores and
their performance on a calibration set on results of virtual screening was analyzed. It was shown
that Max and Mean approaches have superior early enrichment to the commonly used approaches.
Thus, a well-performing, easy-to-implement, and probabilistic alternative to existing approaches for
pharmacophore-based virtual screening was proposed.

Keywords: pharmacophores; machine learning; virtual screening; ligand-based virtual screening

1. Introduction

Pharmacophore modeling is a widely used approach for the discovery of new biologically active
compounds. According to the IUPAC definition, pharmacophore is an ensemble of steric and electronic
features that is necessary to ensure the optimal supramolecular interactions with a specific biological
target and to trigger (or block) its biological response. [1] Once such pharmacophore is found, the task
is to find a compound that has the same arrangement of interaction centers, called pharmacophore
features, in at least one of the low-energy conformations. This process being done in silico is called
pharmacophore-based virtual screening. There are multiple examples of successful applications of
pharmacophore models to find hit compounds [2,3]. Previously, a single pharmacophore model
was commonly used for virtual screening [4,5]. This model could be derived from a structure of
a ligand–protein complex or could be generated from a set of known active compounds. For instance,
seven known antibacterial compounds that inhibit bacterial RNA polymerase and have different
binding modes were flexibly aligned to find a pharmacophore matching a common binding mode.
The final model consisted of four core features (two aromatic, one H-bond donor/acceptor/aromatic,
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and one anion), one accessory feature (hydrophobic), and two aromatic projections. It was used for
screening of an in-house library of 2000 compounds. A total of 64 hits were identified and 11 of
them were experimentally confirmed as RNA polymerase inhibitors [6]. In the case in which multiple
models of the same target are used for virtual screening, consensus hits—compounds that matched
multiple models—could be a preferable way to select hits. It is more likely that a compound would be
active if it matches multiple pharmacophores [7]. Kurczab and Bojarski [8] derived a set of possible
pharmacophore features from multiple structure-based pharmacophore models of 5-HT7 ligands and
enumerated three-, four-, and five-feature models. They found that consensus of these models, when
compound is considered active if it corresponds to at least one pharmacophore model, outperforms
any single model. This is a widely used consensus screening approach we will refer to hereinafter
as OR-consensus. Usually, this consensus scheme works well until there is a poor model in a set of
pharmacophore models that retrieves a lot of inactive compounds that may substantially decrease
the overall screening performance. Therefore, models should be validated on a dataset of actives
and inactives before using them for virtual screening. Only pharmacophores with reasonably high
performance should be taken for OR-consensus. Within the described OR-consensus scheme, all
models are treated as equal, which does not allow compound ranking. Meanwhile, ranking of hits
may improve the performance of virtual screening as it would be possible to select a smaller number
of compounds with a higher probability to find actives. Recently, the common hits approach (CHA),
which ranked compounds based on the percentage of matched pharmacophore models, was suggested
for virtual screening based on pharmacophores retrieved from molecular dynamic (MD) simulations of
protein–ligand complexes [9]. Alternatively, the conformer coverage approach was suggested to rank
compounds based on the percentage of compound conformers matched MD pharmacophores [10].

We proposed a new approach to virtual screening, which treats multiple ligand-based
pharmacophore models according to their individual performances. This approach allows ranking of
virtual screening hits and making more precise selection of them.

2. Results and Discussion

2.1. Pharmacophores and Probabilities: Proposed Approach

Usually, pharmacophore modeling is considered as a special type of virtual screening without
a probabilistic nature. Correspondence of at least one conformation of a molecule to pharmacophore is
considered as evidence of its bioactivity. However, this is not exactly right; simple pharmacophores
having few features usually does not guarantee bioactivity, while correspondence of a molecule to
some complex pharmacophores means that molecule will possess the activity with high confidence.

A pharmacophore model from a machine learning (ML) point of view is a typical case of a one-class
classification model, which tries to identify objects of a specific class among all objects by learning from
a training set containing only the objects of that class [11,12]. Indeed, pharmacophores are designed to
extract active compounds and they are generated usually on a subset of active molecules; however,
inactive can be taken into consideration upon model generation as refinement of pharmacophores,
but not to generate pharmacophores of the inactive class (space of pharmacophores for inactives is
considered infinite, and thus is ignored). In such a way, pharmacophore modeling is a chemistry-specific
one-class classification method based on abstraction of 3D structure of molecules as a set of features
with a given spatial orientation that can be recognized by a target biomolecule.

Similarly to regular classification methods, one can assess the probability that an object
belongs to a particular class Y (usually actives class, and so hereafter, Y means actives) if it has
a particular pharmacophore xi based on accuracy prediction of a calibration set containing active and
inactive molecules:

P(Y|xi) =
NY∩xi

Nxi

= Precision(xi, dataset), (1)
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where NY∩xi is the number of active compounds among those that were retrieved by the pharmacophore
xi and Nxi is the total number of retrieved compounds. P(Y|xi) is nothing else but a precision of
the pharmacophore model xi estimated on a calibration set. This probability can be interpreted in
an opposite way; that is, as the confidence that a molecule possessing pharmacophore xi is active. This
provides an explanation for the intuitively clear concept that pharmacophores with greatest precision
should be used for virtual screening.

In the case of multiple pharmacophore models being used for screening, it is important to assess
P(Y|X), the probability of a compound to be active based on matching of several pharmacophore
models, where X is a set of pharmacophores with xi corresponding to a given molecule. The estimation
of P(Y|X) should favor matching of highly accurate models, P(Y|xi)→ 1 , and should be insensitive to
poor models, P(Y|xi)→ 0 . Therefore, for example, geometric and harmonic mean of P(Y|xi) for a set
of pharmacophores, or multiplication of P(Y|xi) values, can be excluded from consideration owing to
high sensitivity to poor performing models.

In our opinion, the following are two the most suitable hypotheses to estimate P(Y|X) based on
the performances of individual pharmacophore models P(Y|xi):

• Max scheme. In this case, P(Y|X) is simply the maximal value of P(Y|xi):

P(Y|X) = maxP(Y|xi). (2)

It will be reduced to the OR-consensus strategy (selection without ranking) if P(Y|xi) is set to 1 for
all models. However, using performances of individual models estimated on a calibration set, we
can associate athe ctivity of compounds with a probability according to Equation (2).

• Mean scheme. The value of P(Y|X) is an arithmetic mean of P(Y|xi) over all pharmacophores
matching a compound:

P(Y|X) =

∑S
i P(Y|xi)

S
. (3)

This approach is reduced to the common hit approach (CHA) [9] if P(Y|xi) is set to 1 for all models,
and S will be the total number of pharmacophores in the set.

In such a way, having a set of pharmacophores, one can use them all to construct a one-class
classification model that can rank new compounds according to probability to retrieve active compounds
estimated on a dataset of known compounds. Therefore, the proposed approach requires a set of known
active and inactive compounds, which would be used as a calibration set to determine performance
(namely precision) of individual pharmacophore models. The advantage of the Max and Mean schemes
(Equations (2) and (3)) over the regularly used OR-consensus and CHA approach is that it results
in a greater number of distinct values, and thus it can better discriminate selected compounds and
improve their ranking.

Unlike approaches used before, we propose the scheme that applies pharmacophores not only
as classification models with two outcomes (active/inactive), but probabilistic models that can rank
the compound of interest according to the confidence in its activity. Our approach does not require
preliminary selection of well-performing pharmacophore models. Even simple pharmacophores that
match many inactive compounds can be considered within the set of models used for screening. Their
influence on obtained results is negligible. As a disadvantage of the proposed approach, we should
mention its dependency on a calibration set and possible applicability domain issues, as transferability
of calibration set probabilities to a test set may be poor. However, validation of pharmacophore models
on known compounds is required almost for all pharmacophore screening approaches to select the
most reliable models.

2.2. Benchmarking Studies

We compared the proposed approach with the following:
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• the common hit approach, which ranks compounds according to the number of matched
pharmacophore models;

• the commonly used OR-consensus strategy, which uses a set of pharmacophore models
demonstrated reasonable performance on a dataset known of active and inactive compounds and
selects compounds matching at least one of these models. OR-consensus selects compounds that
are predicted as active, but cannot rank them.

We developed pharmacophore models using psearch software [13] and datasets of compounds
retrieved from the ChEMBL database. For each protein target, we obtained from 4 to 270 pharmacophores.
Precision of individual models was estimated on compounds that were not included in a training set
of a corresponding model. Afterwards, we performed virtual screening of DUD-E datasets used as
external test sets in this study and calculated enrichment factors for 0.25%, 0.5%, 1%, 2%, 5%, and 10%
of test set compounds retrieved by models of a particular target. Additionally, we considered not all
models, but only those that have at least four features with distinct coordinates. As shown previously,
the application of more complex models improves the virtual screening performance [9,10]. We also
considered a baseline enrichment if all compounds retrieved by at least one of pharmacophores would be
considered, so called EF100% (enrichment factor). The latter value is the same for Mean, Max, and CHA.
These approaches were compared with the OR-consensus, in which case only pharmacophores with
precision larger than 0.5 and 0.9 were considered.

The results of the benchmarking are summarized in Figures 1 and 2. Early enrichment for Mean
and Max schemes is always greater than that of the OR-consensus approach if all pharmacophores
are considered (OR-consensus corresponds to the level EF100% in this case). The same is true if only
pharmacophores with four and more features are considered; Mean and Max scheme’s early enrichment
is always greater than EF100%. This means that ranking based on precisions of pharmacophore models
on the calibrating set can be transferred to new datasets and pharmacophore models showing greater
precision in selecting active compounds from the external test set more often than low-precision
models. Generally, the unsupervised CHA strategy also has greater early enrichment than EF100%,
but not always. If only high-precision pharmacophore models are considered for OR-consensus (its
level is shown by light-blue and black lines), the enrichment becomes higher, but not always. In some
cases, such as CHEMBL279 and CHEMBL3880 in Figure 1, no model was left, and thus enrichment
dropped down to 0, whereas for CHEMBL244 and CHEMBL3979, the enrichment is not drastically
different from the baseline shown by the EF100% level. Thus, OR-consensus with pharmacophore
selection is quite unstable. However, even if selection of high precision pharmacophores helps to
increase enrichment by the OR-consensus approach, the Max and Mean schemes perform not worse or
even substantially better at a small percentage of selected compounds.

One can notice that, in almost all cases, the Mean and Max schemes have better or comparable
enrichment factors than CHA on the corresponding sets of pharmacophores. Our approach performs
especially well in early enrichment, where it reaches very high values. This shows that the proposed Max
and Mean ranking scheme based on preliminary evaluation of pharmacophore models on calibration
set is better than the unsupervised CHA approach. In some examples that have not been shown
in Figure 1, all approaches were failed or showed the same constant performance (see Supplementary
Materials). The Max and Mean schemes perform quite similarly, but the Mean approach has slightly
greater enrichment factors in some cases. The boost in performance for the Mean scheme shows that,
for some cases, it is important not only to consider the most accurate pharmacophore, but also the
other ones.
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Figure 1. Enrichment factor (EF) curves for the Max, Mean, and common hits approach (CHA) schemes
of molecules ranking in virtual screening for selected targets. Levels for OR-consensus models were
given as horizontal lines (pharmacophores with precision greater than 0.5 and 0.9 are left). The numbers
of corresponding ChEMBL targets are provided.

The selection of pharmacophores based on their complexity (only pharmacophores with more than
four features were considered) had an unstable impact on the performance of both our ranking scheme
and the CHA approach. For CHEMBL208, CHEMBL213, CHEMBL242, CHEMBL1871, CHEMBL3105,
and CHEMBL3880, it improves the enrichment factors, sometime substantially. In CHEMBL279,
CHEMBL235, and CHEMBL2971, the selection of pharmacophores led to lowering of performance
for all approaches. For CHEMBL2971, the enrichment factor reached 0 at all percentages; for this
dataset, only five pharmacophore models were generated and all of them were quite simple. For
CHEMBL205, CHEMBL206, CHEMBL244, CHEMBL235, CHEMBL251, and CHEMBL3979, no obvious
effect of pharmacophore selection was observed.

The same conclusions could be made comparing other virtual screening performance metrics.
The Mean and Max approaches always have greater values of BEDROC metric in comparison with the
CHA approach, thus supporting that our approach is better suitable for virtual screening, Figure 2.
Selection of pharmacophore models according to number of features usually has a negative influence
on BEDROC for the Mean and Max approaches, but slightly improves virtual screening by the
CHA approach for early enrichment. AUC ROC, BEDROC, precision, and recall curves given in the
Supplementary Materials for all studied targets generally support these findings as well.
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Figure 2. BEDROC curves for the Max, Mean, and CHA schemes of molecules ranking in virtual
screening for selected targets. The numbers of corresponding ChEMBL targets are provided.

3. Materials and Methods

For the development of ligand-based pharmacophore models, we collected data from the ChEMBL
database (version 23) [14]. We selected targets for which we could collect reasonably large datasets of
compounds with measured binding affinity expressed as Ki, Kd, or IC50 values in mol/l. Structures of
retrieved compounds were curated using Chemaxon Standardizer and StructureChecker utilities [15].
Salts and other small components were removed, compounds were neutralized and tautomerized, and
isotopes were removed. Additionally, we removed structures that did not pass RDKit [16] sanitization
checks. After that, duplicated structures were identified. The curation workflow is available at the
following link: https://bitbucket.imtm.cz/projects/STD/repos/std. We transformed affinity values to the
logarithmic scale. Compounds were attributed to the active class if their affinity was ≥6 log units and
to the inactive class otherwise. Duplicated structures that were attributed to active and inactive classes
were removed. The list of targets and the number of retrieved compounds for final datasets are given
in Table 1.

https://bitbucket.imtm.cz/projects/STD/repos/std
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Table 1. ChEMBL datasets used for ligand-based pharmacophore modeling and calibration and DUD-E
dataset used for external validation.

ChEMBL ID Target Name
Number of Compounds

(ChEMBL)
Number of Compounds

(DUD-E)

Actives Inactives Total Actives Inactives Total

CHEMBL205 Carbonic anhydrase II 1394 2382 3776 492 31,172 31,664

CHEMBL206 Estrogen receptor alpha 395 1442 1837 383 20,685 21,068

CHEMBL208 Progesterone receptor 448 848 1296 293 15,650 15,943

CHEMBL213 Beta-1 adrenergic receptor 155 482 637 247 15,850 16,097

CHEMBL235
Peroxisome

proliferator-activated receptor
gamma

228 1052 1280 484 25,300 25,784

CHEMBL239
Peroxisome

proliferator-activated receptor
alpha

121 788 909 373 19,399 19,772

CHEMBL242 Estrogen receptor beta 477 972 1449 367 20,199 20,566

CHEMBL244 Coagulation factor X 676 2009 2685 537 28,325 28,862

CHEMBL251 Adenosine 2a receptor 1476 2276 3752 482 31,550 32,032

CHEMBL279 Vascular endothelial growth
factor receptor 2 139 4627 4766 409 24,950 25,359

CHEMBL284 Dipeptidyl peptidase IV 281 2277 2558 533 40,950 41,483

CHEMBL1862 Tyrosine-protein kinase ABL 411 1515 1926 182 10,750 10,932

CHEMBL1871 Androgen Receptor 586 967 1553 269 14,350 14,619

CHEMBL1994 Mineralocorticoid receptor 102 532 634 94 5150 5244

CHEMBL2971 Tyrosine-protein kinase JAK2 131 2545 2676 107 6500 6607

CHEMBL3105 Poly [ADP-ribose]
polymerase-1 259 1138 1397 508 30,050 30,558

3.1. DUD-E Data Sets

For validation of developed models, we collected data from DUD-E datasets [17]. These data
sets contained confirmed active compounds taken from ChEMBL and decoys, compounds that were
not tested against a particular target and were selected from commercially available compounds by
similarity of their physicochemical properties to selected active compounds. Datasets may contain
different tautomeric forms of compounds and were treated as separate compounds during virtual
screening. We identified and removed compounds from DUD-E datasets that were identical to
compounds in collected ChEMBL datasets to avoid overestimation of model performance. The number
of actives and decoys is given in Table 1.

3.2. Pharmacophore Modeling and Virtual Screening

We created ligand-based pharmacophore using the previously developed psearch approach [13].
Within this approach, we generated all possible stereoisomers for compounds with undefined
stereocenters and up to 100 conformers for each compound or stereoisomer. Enumerated stereoisomers
were considered as a single compound during the modeling and validation stages. Compounds were
clustered according to their 2D pharmacophore representation, expecting that compounds with similar
binding modes would be grouped in the same clusters. Five active and five inactive compounds were
taken as a training set from each individual cluster to create pharmacophore models. Additionally,
centroids of clusters were used to create a training set to capture the overall binding mode of compounds
from a data set. Therefore, multiple training sets were created for each target dataset. Pharmacophore
models of maximum complexity, having a maximum number of features, were generated for each
training set using psearch software [13]. Multiple pharmacophore models could be generated for
particular training sets and all of them created a set of models for an individual target (Table 2). In our
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study, we considered two cases: virtual screening based on all models or only on models having at
least four features with distinct coordinates.

Table 2. The number of models generated for individual targets.

ChEMBL ID Target Name Number of Models Number of Models with
Number of Features ≥ 4 a

CHEMBL205 Carbonic anhydrase II 270 260

CHEMBL206 Estrogen receptor alpha 27 26

CHEMBL208 Progesterone receptor 37 32

CHEMBL213 Beta-1 adrenergic receptor 19 17

CHEMBL235 Peroxisome proliferator-activated
receptor gamma 31 26

CHEMBL239 Peroxisome proliferator-activated
receptor alpha 15 15

CHEMBL242 Estrogen receptor beta 61 53

CHEMBL244 Coagulation factor X 45 35

CHEMBL251 Adenosine A2a receptor 110 101

CHEMBL279 Vascular endothelial growth factor
receptor 2 12 11

CHEMBL284 Dipeptidyl peptidase IV 34 34

CHEMBL1862 Tyrosine-protein kinase ABL 27 27

CHEMBL1871 Androgen Receptor 50 48

CHEMBL1994 Mineralocorticoid receptor 6 6

CHEMBL2971 Tyrosine-protein kinase JAK2 4 1

CHEMBL3105 Poly [ADP-ribose] polymerase-1 43 40
a Number of features having distinct coordinates.

Compounds that were not included in a particular training set for a given pharmacophore model
were used as a calibration set to estimate model performance. We performed virtual screening of
calibration sets using the same psearch tool and calculated the precision of individual models.

External validation was done using the DUD-E dataset. We generated up to 100 conformers for
each compound of the dataset. Enumeration of stereoisomers was not required because all compounds
had defined stereocenters in DUD. The created databases of conformers of DUD-E compound were
screened against developed pharmacophore models using psearch.

AUC ROC and BEDROC [18] were calculated using corresponding functions of RDKit [16].
When these values were calculated, all compounds were considered; those that were not selected
by pharmacophore models were assigned a probability equal to zero. For enrichment, precision
and recall calculation only compounds that are selected by at least one pharmacophore model are
considered. For BEDROC calculation, alpha values were calculated using Equation (47) from the
original publication [18]. BEDROC values for selection of 100% compounds cannot be calculated as the
alpha value should be set to zero.

4. Conclusions

In this work, we show that pharmacophores can be treated as a special case of one-class classification
machine learning models. The confidence of bioactivity prediction can be assessed on the basis of
calibration set of compounds with known bioactivity. Two approaches (Max and Mean) were proposed
for assigning probability value that a molecule will possess a given activity class. These approaches
to compound ranking based on their matching of multiple pharmacophore models demonstrated
high performance in early enrichment and works comparable or better than the reference approaches,
common hits approach, and consensus of pharmacophore models based on OR boolean operator
(OR-consensus). Our suggested approaches are not very sensitive to poor performing pharmacophores
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in a set of models compared with the OR-consensus approach and can be easily implemented within
pharmacophore-based virtual screening workflows.

Supplementary Materials: The following are available online, Figure S1: Enrichment curves for Max, Mean,
and CHA scheme for molecules ranking in virtual screening; Figure S2: Precision curves for Max, Mean, and CHA
scheme of molecules ranking in virtual screening for selected targets; Figure S3: Recall curves for Max, Mean,
and CHA schemes of molecules ranking in virtual screening for selected targets; Figure S4: Histogram of BEDROC
values for Max, Mean, and CHA schemes of molecules ranking in virtual screening for selected targets; Figure S5:
Histogram of areas under ROC curve (AUC) values for Max, Mean, and CHA schemes of molecules ranking in
virtual screening for selected targets; Figure S6: ROC curves for Max, Mean, and CHA schemes of molecules
ranking in virtual screening for selected targets.
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