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SUMMARY
Activation of the MLL-ENL-ERtm oncogene initiates aberrant proliferation of myeloid progenitors. Here, we
show induction of a fail-safe mechanism mediated by the DNA damage response (DDR) machinery that
results in activation of the ATR/ATM-Chk1/Chk2-p53/p21CIP1 checkpoint and cellular senescence at early
stages of cellular transformation caused by a regulatable MLL-ENL-ERtm in mice. Furthermore, we identified
the transcription program underlying this intrinsic anticancer barrier, and DDR-induced inflammatory regu-
lators that fine-tune the signaling toward senescence, thereby modulating the fate of MLL-ENL-immortalized
cells in a tissue-environment-dependent manner. Our results indicate that DDR is a rate-limiting event for
acquisition of stem cell-like properties in MLL-ENL-ERtm-mediated transformation, as experimental inhibi-
tion of the barrier accelerated the transition to immature cell states and acute leukemia development.
INTRODUCTION

During the multistep pathogenesis of leukemia, a pool of

leukemia stem cells (LSCs) emerges, capable of limitless self-

renewal and disease maintenance. LSCs can originate from

hematopoietic cells at different developmental stages. Mixed-

lineage leukemia (MLL) fusion oncogenes can transform

committed progenitors to LSCs by reactivation of a self-

renewal-associated transcription program (Cozzio et al., 2003;

Krivtsov et al., 2006). Several mouse models showed that Mll

fusions expressed at physiological levels cause myeloprolifera-

tion without the capacity to propagate the disease in trans-

planted animals (Dobson et al., 1999; Wang et al., 2005). Mll

fusions initiate the preleukemia stem cell (pre-LSC) state, and
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such candidate DDR and cytokine barriers during the long-

latency development of any malignancy in vivo is still missing.

Inspired by these recent developments, we wished to examine

whether a DDR- and/or cytokine-related barrier analogous to

solid tumors and oncogene-transformed fibroblasts might also

impact leukemogenesis. In addition, we wished to test the

potential significance of the barrier concept in an adequate

animal model. To address these issues, we generated a condi-

tional mousemodel, in which theMll-ENL fusion oncogene is ex-

pressed in the physiological context of the endogenousMll locus

and its activity is regulatable with tamoxifen in vivo.

RESULTS

Generation of a Regulatable Mll-ENL-ERtm Knock-In
Mouse
We created a mouse model wherein the protein function of the

Mll-ENL oncogene depends on tamoxifen (TAM) or 4-hydroxyta-

moxifen (4-oht) due to fusion with the mutated estrogen-binding

domain of the estrogen receptor (ERtm) (Littlewood et al., 1995).

TheMll-ENL-ERtm fusion gene was used to engineer the mouse

knock-in allele in the v6.5 mouse embryonic stem cells (ESCs)

(Figure 1A; Figures S1A and S1B available online). We confirmed

the expression of the Mll-ENL-ERtm allele in c-Kit+ hematopoi-

etic progenitors isolated from the BM of the knock-in mice (Fig-

ure S1C). The transcriptional transactivation activity of the fusion

gene and serial replating ability of the Mll-ENL-ERtm c-Kit+ BM

cells were strictly dependent on 4-oht (Figures S1D and S1E).

Activated MLL-ENL-ERtm Induces Myeloproliferation
in Both BM and Spleen with Different Hematopoietic
Characteristics
After 7 months of TAM administration, the Mll-ENL-ERtm mice

developed amyeloproliferative diseasewith a 100%penetrance,

which progressed into the terminal stage in five of ten animals

after a long period (mean survival: 592 ± 112 days) of continuous

TAM provision. To study early and late phenotypic characteris-

tics of the MLL-ENL-ERtm-mediated disease in vivo, we moni-

tored hematopoiesis in the Mll-ENL-ERtm/TAMmice at the early

(7 months) and terminal stage of disease. Time-matched TAM-

treated wild-type mice served as controls for both stages. Early

changes in the BM were characterized by hypercellularity with

expansion of mature myeloid elements (band neutrophils)

(Figures 1B and S2A), consistent with fluorescence-activated

cell sorting (FACS) analysis showing an increase in Mac-1+/

Gr-1+ cell population and emergence of a c-Kit+/Mac-1+ sub-

population in some animals (Figure 1C). At this time point,

a left shift in granulopoiesis occurred with an increase of band

neutrophils and monocytes at the expense of lymphocytes in

the spleen (Figure S2B). The myeloid expansion in the spleen

progressed at the terminal stage of disease (Figure 1D, right).

This was associated with a gradual increase of Mac-1+/Gr-1+

myeloid cells and a decrease of B220+/CD19+ and CD19+/

IgM+ B-lymphoid cells. Notably, there was an expansion of the

c-Kit+/Mac-1+ subpopulation (Figure 1E). The terminal stage

was also associated with high numbers of white blood cells,

large numbers of mature segmented neutrophils, less mature

band neutrophils and only a few percent of myeloblasts in the

peripheral blood. There was occasionally a left shift in granulo-
518 Cancer Cell 21, 517–531, April 17, 2012 ª2012 Elsevier Inc.
poiesis and elevated monocytes (Figure 1F), and myeloid infiltra-

tion into the liver and kidney (Figure S2C). Somemice developed

solid tumors in the mesenterium, formed by Mll-ENL-ERtm posi-

tive myeloid cells (data not shown), indicating the invasive and

angiogenic nature of the MLL-ENL-ERtm-transformed cells.

The initial expansion of the granulocytic lineage in the BM

eventually culminated in a virtual depletion of the tissue over

time. Thus, activation of the MLL-ENL-ERtm oncogene leads

to abnormal expansion of the granulocytic lineage in the BM

and granulo-monocytic lineages in the spleen with a potential

to progress into a malignant phenotype.

Mll-ENL-ERtm hematopoietic progenitors derived from both

tissues at the early stage showed increased 4-oht-dependent

myeloid colony forming ability in methylcellulose cultures. In

the absence of 4-oht, both CFU-GM and CFU-G colonies were

lower in numbers, size, and cellularity (Figures 2A and 2B, top

and bottom right panels). Besides the typical CFU-GM and

CFU-G colonies, we often found colonies that were hypercellular

and appeared more immature (Figure 2B, top left panel). These

results suggest that the active MLL-ENL-ERtm oncogene

enhances proliferation and increases survival of committed

myeloid progenitors, features that could be reverted after deac-

tivation of the oncogene. Colonies did not grow in the absence of

growth factors and cytokines (with or without 4-oht) suggesting

that MLL-ENL-ERtm does not confer growth factor-independent

properties to immortalized progenitors.

MLL-ENL-ERtm-Induced Proliferation/Self-Renewal
of Myeloid Cells Leads to Activation of a Fail-Safe
Mechanism
Given the observed distinct patterns of disease in the two

tissues, we next examined the proliferation rates of the

expanded Mac-1+ cell population in the BM and spleen of the

Mll-ENL-ERtm/TAM mice by estimating bromodeoxyuridine-

(BrdU) incorporation at four time points: 7, 8, 9, and 10 months.

There was a striking difference in cell proliferation between the

two sites. The vast majority (90%) of Mac-1+ cells in the BM

showed BrdU-positivity at 7 months of TAM treatment, followed

by a dramatic loss of their long-term proliferative potential, as

evidenced at the 8-month time point by the lack (below 1%) of

BrdU incorporation. In contrast, the initial hyperproliferation of

Mac-1+ cells was more moderate in the spleen (40.4% of BrdU+

at 7 months) and importantly, proliferating Mac-1+ cells were

reduced yet remained clearly detectable also during disease

progression at the 9- and 10-month time points (23.8% BrdU+

among Mac-1+ cells) (Figures 3A, 3C, left, and 3E).

These findings prompted us to test whether the proliferation

phenotypes could reflect induction of a fail-safe mechanism,

possibly differentially in the BM versus spleen. To address this

question, we examined total BM cells and spleen sections

(from the Mll-ENL-ERtm/TAM mice that were used for the

BrdU-incorporation assay) for the senescence-associated

beta-galactosidase (SA-b-gal) (Dimri et al., 1995). In the BM,

SA-b-gal was induced in neutrophils (Figure 3B) in parallel with

the loss of their proliferative potential by 8 months of TAM treat-

ment (Figure 3E, left). Consistent with reduced proliferation of

Mac-1+ cells in the spleen, we detected an accumulation of

SA-b-gal above the physiological level in the Mll-ENL-ERtm/

TAM mice (9–10 months of TAM) compared to wild-type/TAM
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controls (Figure 3C, right). Compared to early stage (7 months of

TAM treatment), spleen displayed decreased proliferation and

appearance of SA-b-gal+ cells at the 9- to 10-month time points

(Figures 3C and 3E, right). These results suggest a balanced

state of proliferation and senescence in the expanding myeloid

cell population in the spleen. Collectively, these findings indicate

that the MLL-ENL-ERtm-initiated hyperproliferation is followed

by induction of cellular senescence that counteracts the aberrant

proliferation of Mac-1+ cells, a process that is more robust in the

BM compared with the spleen.

The ATR-Chk1 DDR Pathway Is Activated in the Mac-1+

Population
The MLL-ENL-ERtm-induced hyperproliferation and senes-

cence prompted us to search for potential activation of DNA

damage signaling, a response to oncogene-evoked replication

stress reported for human cells and solid tumors (Halazonetis

et al., 2008). Indeed, phosphorylation of the ataxia telangiectasia

mutated and RAD3-related kinase at serine 428 (pATRS428),

which is induced in response to replication-associated DNA

damage, was detected in the majority of Mac-1+ cells both in

the BM and spleen, coincident with the early MLL-ENL-ERtm-

induced hyperproliferation (7 months of TAM treatment), in

contrast to absence of pATRS428 in Mac-1+ cells of either organ

in wild-type/TAM control mice (Figure S3A). Importantly, data

very similar to pATRS428 were obtained by both immunohisto-

chemistry and immunofluorescence using a recently published

antibody against ATR autophosphorylated at threonine 1989

(T1989) (Figures 3D and S3A), a site crucial for ATR activation

(Liu et al., 2011; Nam et al., 2011). The specificity of the two anti-

bodies to phosphorylated ATR was validated using a number of

tests and models including ATR-deficient control cells (Fig-

ure S3B; and data not shown). Given the consistent results

seen with both antibodies, we refer to both markers collectively

as pATR. Consistently, pATR was accompanied by downstream

markers of ATR signaling, including histone H2AX phosphory-

lated at serine 139 (gH2AX) and checkpoint kinase 1 (Chk1)

phosphorylated at serine 345 (pChk1S345) in Mac-1+ cells in

both BM and spleen (Figure 3D).

To examine whether DDR signaling persists across disease

stages, we followed the level of pATR and the gH2AX signal at

the time points assessed for proliferation and senescence. Anal-

ogous to proliferation and senescence phenotypes, there was

a striking difference in the ATR-linked signaling between BM

and spleen. In the BM, there was an increase both in the nuclear

gH2AX signal intensity (data not shown) and number of Mac-1+/

gH2AX+ cells that correlated inversely with the number of Mac-

1+/BrdU+ cells in the transition period to senescence between

7 and 8 months of TAM treatment (Figure 3E, left). Interestingly,

pATR became undetectable and the intensity of gH2AX was

decreased (but not eliminated) in the senescent cells (Fig-

ure S3C). In contrast to BM, pATR was present both during the

early (proliferative) and progression stages concomitant even

with thepartial senescence phenotype in the spleen (Figure S3D),

a scenario that is consistent with partly ongoing proliferation and

less pronounced gH2AX compared to BM (Figure 3E, right).

Collectively, these results indicate that in response to MLL-

ENL, DDR is indeed activated in vivo, and to a higher degree in

BMcompared to spleen. Increased signaling of the ATR pathway
and decrease in proliferation are gradual processes that precede

senescence in the BM. The extent of DDR signaling correlates

well with the efficiency of senescence induction in BM versus

spleen, suggesting the signaling threshold may be influenced

by the local tissue microenvironment.

ATM Is Required for an Effective Activation
of the p53/p21CIP1 Pathway
The differences in gH2AX patterns between BM and spleen, and

partial persistence of gH2AX in the BM even after loss of pATR

led us to test whether the ataxia telangiectasia-mutated (ATM)

kinase might be activated in response to MLL-ENL, particularly

in the BM. Indeed, the early proliferation disease stage in the

BMwas associated withmoderate levels of activated ATMphos-

phorylated at serine 1981 (pATMS1981 and pATM) seen as one

to two nuclear foci in about 12%of cells. The level of pATMgrad-

ually increased to 43%of cells, and five to ten foci in most nuclei,

during the transition toward senescence (Figures 4A, top, and

4B). Furthermore, active p53 (phosphorylated at serine 18,

p-p53Ser18) and enhanced expression of its transcriptional

target p21CIP1 (Figures 4A, bottom, and 4C) became apparent,

in parallel with high levels of pATM. pATM was detectable in

�90% of myeloid cells in the senescent state of the Mll-ENL-

ERtm/TAM BM (Figure 4D) consistent with the high proportion

of gH2AX+/Mac-1+ cells. Notably, ATM was not activated in

the spleen (data not shown), consistent with the overall lower

extent, and gradual elimination of DDR in this tissue. In contrast

to the activated DDR signaling, we did not detect any increase of

p16INK4A mRNA or protein expression in the senescent BM (data

not shown).

These results indicate that gradually increasing MLL-ENL-

induced DDR, through combined ATR and ATM signaling, may

lead to preferential activation of p53/p21CIP1 and more robust

proliferation arrest and cellular senescence in the BM, compared

to overall milder phenotypes and lack of ATM activation in the

spleen.

Gene Expression Signatures of the Transition
from Proliferation to Senescence
To better understand the MLL-ENL-induced dynamic cellular

phenotypes and identify potential regulators of the observed

cell states, we next profiled gene expression at three time

points: 1), the early high proliferation with low DDR signaling; 2),

the transition period of lower proliferation and high DDR activity;

and 3), the senescence in the BM. Compared to BM from

matched wild-type/TAM controls at each time point, gene

ontology (GO) annotations of upregulated transcripts revealed

enrichment of genes related to innate and adaptive immune

response across the entire time course analyzed (Figure 5A).

Using apairwise analysis, we thendetermined unique and shared

expression patterns among the three time points (Figure 5B). The

shared immune response genes included those implicated in cell

migration and localization, such asCx3cr1,Ccr1,Ccl9, andVav3,

leukocyte activation, such as Nfam1 or Slc11a1, and G protein

coupled receptor pathways (Emr1, Emr4). Furthermore, toll-like

receptor (Tlr) genes, implicated in cancer and in innate and

adaptive immune responses through activation of cytokine and

chemokine production (Rakoff-Nahoum and Medzhitov, 2009),

were upregulated uniquely in the early proliferation (Tlr5), or
Cancer Cell 21, 517–531, April 17, 2012 ª2012 Elsevier Inc. 519



Figure 1. Myeloproliferation in the Mll-ENL-ERtm Mice

(A) Schematic representation of the Mll-ENL-ERtm/Neofloxed knock-in allele. The Mll-ENL fusion point, the estrogen receptor binding domain (ERtm), poly-

adenylation site (BGH-polyA), and neomycin resistance gene under the phosphoglycerate kinase promoter (PGK/Neofloxed) are shown.

(B) Histopathology images: hypercellularity and expansion of mature myeloid cells in the BM of the Mll-ENL-ERtmmice at the early stage of disease compared to

wild-type/TAM control. Scale bars represent 100 mm and 20 mm (inset).

(C) FACSdetermined an increase inMac-1+/Gr-1+ andMac-1+/c-Kit+ cells in the BMof early disease stageMll-ENL-ERtm/TAMmice compared towild-type/TAM

animals. Data represent average cell percentages counted from three mice ± SD.

(D) Spleen histology, expansion of extramedullary hematopoiesis and disruption of the splenic architecture at the terminal stage of disease (right). Scale bars

represent 200 mm and 20 mm (inset).

(E) Time course of indicated marker expression at 7 and 16–23 months of TAM treatment in the spleen of the Mll-ENL-ERtm/TAM mice compared to wild-type/

TAM mice shows expansion of Mac-1+/Gr-1+ and Mac-1+/c-Kit+ myeloid cells, and decrease in B220+CD19+, CD19+IgM+ B lymphoid cells. Data represent

average cell percentages measured by FACS, counted from three mice ± SD.
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Figure 2. MLL-ENL-ERtm-Dependent Proliferation and Survival of Committed Myeloid Progenitors

(A) Increased myeloid colony formation of the Mll-ENL-ERtm BM (left) and spleen (right) cells derived from TAM-treated mice at early disease stage compared to

wild-type/TAM controls. Note lower colony numbers in the absence of 4-oht (experiments performed in duplicates, data represent average colony numbers from

two mice ± SD). The same color coding was used for both graphs.

(B) Mll-ENL-ERtmCFU-GM andCFU-G colonies show an immature phenotype in the presence of 4-oht: CFU-GM colonies with compact centers without the halo

of single cells and hypercellular, dense CFU-G colonies (top left). Note reversion of the immortalized phenotype and loss of colony formation capacity of the

Mll-ENL-ERtm CFU-GMs and CFU-Gs in the absence of 4-oht (top right).

See also Figure S2.
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during both the proliferation and transition periods (Tlr6). Down-

stream mediators of TLR signaling, such as Tnfsf14 (linked to

NF-kB signaling), and MAPK and JNK kinase pathway genes

such asMap3k5 and Fgd4, were upregulated in the proliferation

state. A set of inflammatory response genes such as Il1f9,Nfkbiz,

Stat6, Il1rn, and Tnfrsf1b were upregulated during the prolifera-

tion and transition states, and so were two pattern recognition

receptors, Clec7a and Clec2i, implicated in cytokine production.

Another set of genes was strongly yet transiently upregulated

only during the transition period of high DDR signaling, followed

by a drop to basal levels in senescence. These included imme-

diate early genes such as Jun, Junb, Egr1, Egr2, Zfp36, Ier2

and Ier3, and Cebpb, a candidate key regulator of inflammatory

cytokine and chemokine production in oncogene-induced
(F) Representative PB smear with abundant mature myeloid cells (scale bar repre

terminal disease stage. Data are average (data range) from three to four mice, re

mice at the terminal disease stage are also shown in (D–F).

See also Figure S1.
senescence (Acosta et al., 2008). Regulators of inflammation,

including chemokine genes Cxcl2, Ccl3, and Ccl4, two key cyto-

kine genes Tnfa and Il1b, and Ptgs2, associated with tumor-

promoting inflammation (Wang and Dubois, 2010), were also

upregulated (Figure 5C).

For the spleen, differential gene expression profiles were

determined for three stages: 1), early (proliferation, induced

DDR); 2), progression (partial senescence, DDR maintained);

and 3) terminal (proliferation, low or absent DDR, no senes-

cence). By pairwise analysis, we found a set of genes differen-

tially expressed at the early stage and maintained their pattern

during disease progression. The upregulated genes were en-

riched in cell cycle regulators. Interestingly, downregulated

genes were enriched in innate immunity genes, acute phase
sents 20 mm) and PB differential counts with a left shift in granulopoiesis at the

spectively. Data from untreated Mll-ENL-ERtm mice age-matched to leukemic
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Figure 3. Tissue Specificity of Association between Proliferation Rate, Senescence, and DDR Activation in Mac-1+ Cells during Disease
Progression

(A) BrdU-positivity (red) of Mac-1+ (green) cells indicates aberrant proliferation at 7 months of TAM treatment, and BrdU-negativity of Mac-1+ cells shows loss of

proliferation by 8 months of TAM treatment in the Mll-ENL-ERtm/TAM BM. Nuclei stained with DAPI (blue). Scale bar represents 20 mm.

(B) Quantification of SA-b-gal assay at 7 and 8 months of TAM treatment in the BM of Mll-ENL-ERtm/TAMmice compared to wild-type controls TAM-treated for

7 months. Average percentages of SA-b-gal positive cells from two to three mice per time point ± SD.

(C) Aberrant proliferation of Mac-1+ cells during disease progression at 7 and 9–10 months of TAM treatment; cytospin preparations, scale bar repre-

sents 20 mm (left panel). SA-b-gal staining of spleen sections (right panel) performed at the same time points as the BrdU assay. Scale bar represents

100 mm.

(D) Activation of the ATR/Chk1/gH2AX pathway (red signals) in Mac-1+ (green) cells in both tissues at 7 months of TAM treatment. Nuclei stained with DAPI (blue).

Scale bar represents 20 mm.
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Figure 4. The ATM/p53/p21CIP1 Checkpoint Signaling in the Transition Cell State in the Mll-ENL-ERtm/TAM BM

(A) Activation of ATM during transition from proliferation to senescence in the Mac-1+ cell population in the Mll-ENL-ERtm/TAM BM compared to wild-type/TAM

mice correlated with phosphorylated p53 (p-p53S18, bottom panel).

(B) Quantification of pATMS1981 in the proliferation and transition cell states compared to wild-type/TAM mice. Data are averages from two mice per genotype

and cell state ± SD.

(C) Expression level of p21CIP1 in the proliferation and transition states in the Mll-ENL-ERtm/TAM BM compared to wild-type/TAM mice. Data are averages from

three mice per genotype and cell state ± SD. Each measurement performed in triplicate.

(D) Immunoperoxidase staining (left), and quantification of pATMS1981 in myeloid cells in the Mll-ENL-ERtm/8 months TAM BM associated with senescence

(right). pATMS1981 quantified in granulocytes in the BM of wild-type/8 months TAM mice was used as control. Scale bar represents 20 mm. Data are averages

from two mice per genotype ± SD.
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genes, and those involved in cell activation and migration (Fig-

ure 5D). The genes transiently upregulated in the BM during

the high-DDR transition period, were not differentially expressed

in the spleen (data not shown).

These data suggest that MLL-ENL-ERtm-induced cellular

transformation is associated with altered innate and adaptive

immune response, manifested as inflammation with character-

istic gene expression profiles and phenotypic features that differ

in the tissue environments of BM and spleen, respectively. These

findings raise questions about the potential interplay and/or hier-

archical order of the MLL-ENL-induced DDR activation, senes-

cence, and the inflammatory responses.
(E) Inverse correlation between proliferation and DDR in the BM over time (left). C

disease stages (right). Average percentages of Mac-1+/BrdU+ and Mac-1+/gH

point ± SD. Asterisks indicate the average value = 0 for wild-type/TAM/BrdU+/Mac

See also Figure S3.
CXCL2 and CCL3 Promote DDR Signaling
and Cooperate with TNF-a to Induce Senescence
in MLL-ENL-ERtm-Immortalized BM Cells
As Cxcl2 was present in the MLL-ENL-ERtm-induced inflamma-

tory gene set (Figure 5C), and previously implicated in RAS-

evoked senescence (Acosta et al., 2008), we hypothesized that

CXCL2 may contribute to the MLL-ENL-ERtm-induced DNA

damage and senescence in our model. We therefore derived

total BM cells from the Mll-ENL-ERtm/TAM mice in the prolifer-

ation state and cultured them in the presence of GM-CSF,

G-CSF, and 4-oht. Reminiscent of BM in vivo, the DDR markers

pATR and gH2AX were present in such cultured cells. Notably,
orrelation of the proliferation rate of the Mac-1+ spleen cells with DDR across

2AX+ cells among total Mac-1+ cells, calculated from three mice per time

-1+ andMll-ENL-ERtm/TAM/BrdU+/Mac-1+ in the senescence state in the BM.
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Figure 5. Gene Expression Profiling across Disease Stages and Cellular States

(A) Overrepresented GO terms in indicated cellular states in the Mll-ENL-ERtm/TAM BM. GO analysis was performed on upregulated genes (5% p value cut-off,

1.5-fold change cut-off) in each cell state compared to wild-type/TAM controls.

(B) Venn diagram of differential gene expression in the BM ofMll-ENL-ERtm/TAMmice across different cellular states. Differentially expressed genes (5% p value

cut-off, 1.5-fold change cut-off) in each cell state were used for pairwise comparison to identify unique and shared genes. Numbers represent the up- or

downregulated genes in unique sections or shared genes in each intersection.

(C) Heatmap representation of differential expression of selected genes across cell states in the Mll-ENL-ERtm/TAM BM. Rows represent individual genes and

columns represent individual mice. Values are indicated as log2 ratios.

(D) Venn diagram of differential gene expression in the spleen of Mll-ENL-ERtm/TAMmice across disease stages. Overrepresented GO terms in upregulated and

downregulated gene sets shared between the three disease stages. The same approach and selection criteria were used as for the BM.
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pATR declined upon 4-oht withdrawal indicating that ATR phos-

phorylation depends on continuous activity of MLL-ENL-ERtm

(Figure S4A). Next, we exposed this BM culture to CXCL2,

CCL3, TNF-a, and IL-1b (each alone or in various combinations)

that were part of the inflammatory expression profile during the

transition period to senescence. Cells were grown for 4 days
524 Cancer Cell 21, 517–531, April 17, 2012 ª2012 Elsevier Inc.
under these conditions and assayed for gH2AX at day 2 and

SA-b-gal at day 4. The highest level of gH2AX was observed in

cultures exposed individually to chemokines CXCL2 or CCL3.

Addition of TNF-a or IL-1b alone did not significantly enhance

gH2AX (Figure 6A, left). The highest level of senescence

was induced in the presence of CXCL2/TNF-a/IL-1b,



Figure 6. Cooperation of DDR and Inflammation in MLL-ENL-ERtm-Induced Senescence

(A) Effects of selected inflammatory factors on DDR in aMll-ENL-ERtm BM cell line assessed by gH2AX staining at 48 hr of treatment. The highest level of gH2AX

in individual cells in untreated control culture (10–20 foci/nuclei) was estimated, and the relative number of these cells was counted. This level was used as

a baseline threshold, and the relative number of cells containing gH2AX foci on the baseline level or above (R20–30 foci/nuclei or an intense homogenous signal

pattern) was estimated in each culture condition. Data are averages from two experiments ± SD (left). The effect of selected inflammatory factors on senescence

induction in a Mll-ENL-ERtm BM cell line. The graph shows the percentage of SA-b-gal positive cells relative to total number of cells calculated in each tested

conditions at day 4. Data are averages from two experiments ± SD (right).

(B) Time course expression of selected genes from the inflammatory signature after IR in a Mll-ENL-ERtm BM cell line. Data are averages from two experiments ±

SD (left). Time course of expression of selected genes from the defined inflammatory signature after UV in a Mll-ENL-ERtm BM cell line. Data are averages from

two experiments ± SD (right). The same color coding was used for both graphs.

See also Figure S4.
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CCL3/TNF-a/IL-1b, CXCL2/CCL3/TNF-a, and CXCL2/CCL3/

TNF-a/IL-1b (Figure 6A, right). DDR was not increased (Fig-

ure S4B) and senescence was not induced in the control

32Dcl3 BM cells. Thus, although CXCL2 and CCL3 signaling

pathways enhance the DDR in MLL-ENL-ERtm-immortalized

cells, additional factors, such as TNF-a are required for MLL-

ENL-ERtm-induced senescence in vitro. IL-1b may contribute

to senescence induction; however, it is ineffective on its own.

DDR Activates a Subset of the Inflammatory Signature
Genes
To examine whether some genes from the defined inflammatory

signature in our model might selectively respond to genotoxic

insults that trigger ATR and/or ATM kinase signaling, the cultured

Mll-ENL-ERtm BM cells were subjected to ionizing radiation (IR)

and ultraviolet light (UV) exposure, and mRNA expression was

measured at 0.5, 1, 2, 3, and 6 hr after irradiation. The most up-

regulated genes were Egr1, Cxcl2, and Ccl3, which rapidly re-

sponded to both IR and UV at the 0.5-hr time point. The Zfp36
gene was highly upregulated only in response to UV, whereas

three genes, Ier2, Il1b (at the 0.5-hr time point), and Tnfa (at

the 3-hr time point), were upregulated only in response to IR

(dominant ATM signaling). The expression levels of Cebpb and

Junb did not change in response to either radiation treatment

(Figure 6B). We conclude that Cxcl2 and Ccl3 are expressed

very early upon DNA damage and may be coregulated with

Egr1; furthermore Cxcl2 has been recognized as a direct target

of EGR-1 (Ramana et al., 2009). ATM-mediated signaling may

contribute to the maintenance of expression levels of Ier2, Il1b,

and Tnfa.

The DDR-Mediated Senescence Barrier Is Eliminated
during Leukemia Progression
Having established the interplay between DDR and inflammatory

signaling as a candidate senescence-inducing barrier in the Mll-

ENL-ERtm mice, we argued that elimination or bypass of such

antileukemia barrier by natural selection would be predictable

for those animals that have developed the terminal disease.
Cancer Cell 21, 517–531, April 17, 2012 ª2012 Elsevier Inc. 525



Figure 7. Caffeine Treatment Facilitates AML Development

(A) Caffeine treatment of Mll-ENL-ERtm/TAM mice at the early disease stage significantly (log rank test, p < 0.001) reduces disease latency in vivo.

(B) PB differential counts and WBC counts of caffeine-treated Mll-ENL-ERtm/TAM and wild-type/TAM mice. Data are averages from three mice (data range).

(C) FACS analysis shows an increase in c-Kit+/Mac-1+/Gr-1+ cells in the BM and spleen of caffeine-treated Mll-ENL-ERtm/TAM mice compared to the early

disease stage (see Figures 1C and 1E). Data are average percentages counted from three mice ± SD.
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Analyses of DDR signaling and senescence in the spleen of such

mice showed sustained pATR, however, the number of gH2AX-

positive cells was decreased compared to earlier disease

stages. Notably, features of senescence were either completely

absent or only residual (Figure S5A). These results suggest that

development to a more advanced stage of MLL-ENL-ERtm-

driven leukemia is associated with reduced DDR signaling itself

(lower gH2AX) and/or elimination/bypass of the downstream

impact of DDR signaling, below the threshold required for senes-

cence. Such a scenario is also consistent with an overall increase

in the Mac-1+/c-Kit+ cell population in the spleen throughout

disease progression (Figure 1E) indicating that this population

gains selective advantage of limitless growth.

Barrier Inhibition Accelerates Cellular Transformation
toward a More Immature Cell State
To test our concept of DDR as a driving force of cytokine expres-

sion and senescence induction that may delay or prevent the

MLL-ENL-ERtm-mediated transformation in vivo, we assessed

whether chemical silencing of DDR could impact the kinetics of

disease progression in our model. To inhibit DDR in vivo, the

Mll-ENL-ERtm/TAM mice at the early disease stage and wild-

type/TAM controls (7 months of TAM treatment) were subjected

to continuous treatment by caffeine, a commonly used inhibitor

of both ATM and ATR kinases. Striking acceleration of the

disease was observed in the Mll-ENL-ERtm mice that showed

signs of disease with a mean survival of 62 ± 23 days of caffeine

treatment (Figure 7A). PB differential counts showed high

numbers of band neutrophils and monocytes (Figure 7B).

Notably, FACS profiling revealed increased c-Kit+/Mac-1+/

Gr-1+ cell populations in the spleen and the BM (Figure 7C)

compared to the early stage phenotype (Figures 1C and 1E).

Differential counts showed a marked shift to immature myeloid

elements in the spleen such as promyelocytes and myeloblasts

(Figure 7D), and severe hepato-splenomegaly was apparent due

to invasion of leukemia cells into tissues (Figure S5B). DDR

markers were decreased in Mac-1+ cells both in the BM and

spleen confirming the inhibition of ATR/ATM activity, and senes-
(D) Differential counts from the spleen of caffeine-treatedMll-ENL-ERtm/TAM sho

TAM mice. Data are averages from four mice (data range). Representative sp

morphology of promyelocytes and myeloblasts (bottom). Scale bar represents 2

(E) Quantitative RT-PCR analysis of inflammatory gene expression in the BM of

type/TAM controls. The expression level of tested genes measured by quantitati

matched wild-type/TAM mice is also indicated. The results are fold changes betw

SD. Each measurement was performed in triplicate.

(F) Quantification of colony formation of BM and spleen cells harvested from Mll-E

and seven rounds of replating, respectively. Data are averages from four experim

triplicate.

(G) The Mll-ENL-ERtm spleen LSC-enriched cells initiate a rapid onset of leukemia

p = 0.001, primary versus tertiary transplants p = 0.003). The in vivo leukemogenic

Mll-ENL-ERtm BM pre-LSCs (log rank, p = 0.025) and spleen pre-LSCs (log ran

secondary recipients; tert. rec., tertiary recipients.

(H) Model summarizing the mechanistic basis of the barrier that delaysMLL-ENL-i

proliferation of myeloid cells leading to development of a pre-LSC state manife

signaling pathways activate a complex fail-safe program consisting of antipro

signaling toward activation of p53 that modulates the fate of pre-LSCs. A critical c

such as self-renewal, a prerequisite of development to a more transformed cell s

progression to AML. For detailed explanation see Discussion. Lines (arrow, activa

state; violet square, transition state. Upregulated expression of inflammatory reg

See also Figure S5 and Tables S1 and S2.
cence was not detected in either BM or spleen. The immunoflu-

orescence data on tissue sections were corroborated by a sensi-

tive immunoperoxidase staining that showed only weak to

undetectable DDR markers in tissues from caffeine-treated

mice, in contrast to variable and often strong nuclear focal stain-

ing in caffeine-free Mll-ENL-ERtm/TAM mice (Figure S5C and

data not shown).

Given that some of the inflammatory signature genes upregu-

lated in the high-DDR Mll-ENL-ERtm/TAM BM (validated with

quantitative RT-PCR, Figure 7E) were responsive to DDR, we

determined the expression level of these inflammatory genes

(Egr1, Cxcl2, Ccl3, Zfp36, Ier2, Il1b, and Tnfa) in the BM of the

caffeine-treated Mll-ENL-ERtm/TAM mice in vivo. Under such

conditions, only Il1b became upregulated (compared to wild-

type/TAM/caffeine mice) whereas all other genes evaluated

were expressed at the basal level despite the active MLL-ENL

oncogene (Figure 7E).

We conclude that caffeine treatment is sufficient to overcome

the barrier to MLL-ENL-ERtm-induced malignancy, leading to

accelerated transition of committed progenitors to immature

cell states during leukemia development. Caffeine treatment

also prevents activation and/or leads to reversion of a large

subset of the transient inflammatory gene signature, consistent

with our present data that these genes are regulated in response

to DDR induction.

Caffeine Treatment Promotes Acquisition of Self-
Renewal Capacity and Enables Development of LSCs
We next analyzed the impact of the dual ATM/ATR inhibitor

caffeine on self-renewal potential of Mll-ENL-ERtm myeloid

progenitors. BM and spleen cells isolated from Mll-ENL-ERtm/

TAM myeloproliferative mice (early stage, 7 months TAM) and

spleen cells from caffeine-treated Mll-ENL-ERtm/TAM AML

mice were tested for their colony formation and serial replating

ability in methylcellulose culture with or without 4-oht. Early

stage Mll-ENL-ERtm BM and spleen myeloid progenitors

exhausted their ability to form colonies during the fifth round of

replating in the presence of 4-oht. In contrast, Mll-ENL-ERtm
wamarked shift to immature cell types compared to caffeine-treatedwild-type/

leen smear from the caffeine-treated Mll-ENL-ERtm/TAM mouse shows the

0 mm.

caffeine-treated Mll-ENL-ERtm/TAM mice compared to caffeine-treated wild-

ve RT-PCR in the Mll-ENL-ERtm/TAM BM (transition state) compared to time-

een average expression levels measured in two to three mice per genotype ±

NL-ERtmmice of indicated disease stages and treatment-conditions over five

ents (cells derived from individual mice) ± SD. Each experiment performed in

in serial transplantations (log rank tests, primary versus secondary transplants

potential of the Mll-ENL-ERtm spleen LSCs is significantly higher compared to

k, p = 0.025) in secondary recipients. Prim. rec., primary recipients; sec. rec.,

nduced acute leukemia development. Top scheme:MLL-ENL initiates aberrant

sted as a myeloproliferative disorder. Cell intrinsic (ATR) and extrinsic (TLRs)

liferative and inflammatory signals. Inflammatory factors fine-tune the DDR

ell-fate decision occurs between senescence and acquisition of LSC properties

tate. Bottom scheme: inhibition of DDR prevents senescence and accelerates

tion; blunted, inhibition) represent regulatory impact. Pink square, proliferation

ulators is highlighted by arrows.
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AML cells showed enhanced cloning efficiency and continued to

form numerous colonies through all seven rounds of replating

evaluated. Reversion of MLL-ENL-ERtm activity by 4-oht with-

drawal both in early stage and AML cells led to formation of only

mature colony types in the first and second rounds of replating

(Figure 7F). We therefore identify the early stage Mll-ENL-ERtm

progenitors as a pre-LSC population with limited proliferation

and self-renewal capacity, whereas AML cells derived from the

caffeine-treated Mll-ENL-ERtm mice represent a LSC-enriched

population with acquired unlimited self-renewal potential.

To further assess the leukemia-initiating potential of Mll-ENL-

ERtm pre-LSCs and LSCs, we performed serial transplantations

into TAM-treated SCID recipients. Consistent with the results

from the in vitro replating assay, the Mll-ENL-ERtm BM pre-

LSCs induced myelomonocytic proliferation with a long latency

(229 days) in one of four primary recipients and all secondary

recipients remained disease-free until 165 days after transplan-

tation. The Mll-ENL-ERtm spleen pre-LSCs induced leukemia

in one of four primary transplanted mice with a latency of

134 days, and in one secondary transplant with a similar latency

(140 days, n = 2). Importantly, Mll-ENL-ERtm LSC-enriched

spleen cells induced leukemia with a short latency (mean: 81 ±

30 days) in four of six primary recipient mice, and in both

secondary and tertiary transplants with a complete penetrance

in 26 ± 2 days and 25 ± 0 days after transplantation, respectively

(Figure 7G). Importantly, spleen LSC-initiated AMLs exhibited

a more severe phenotype, higher numbers of myeloblasts in

the analyzed tissues and higher frequency of c-Kit+ cells in the

spleen compared with pre-LSC-induced AML in the primary

transplantations (Table S1). In addition, the degree of phenotypic

maturity negatively correlated with the level of DDR activation in

the primary transplanted animals. We detected high level of

gH2AX in the majority of spleen cells in mice with a pre-LSC-

induced myelomonocytic proliferation and leukemia. In contrast,

the majority of the LSC-induced AML spleen cells were negative

or weakly positive for gH2AX. Thus, the high self-renewal activity

correlates with perturbation of DDR signaling in the spleen of

primary recipients (Figure S5D). Together, these results suggest

that inhibition of DDR enables Mll-ENL-ERtm pre-LSCs to gain

self-renewal property and establish a LSC population with

a long-term ability to propagate leukemia in mice.

Relevance of the DDR Pathway to Human
MLL-Rearranged Leukemia
Based on the results obtained with the mouse model, two

predictions could be made forMLL-rearranged human leukemia

at the clinically manifest, malignant stage: 1), the upstream DDR

signaling could be constitutively activated, reflecting the contin-

uous stress caused by the MLL fusion oncogene; and 2), down-

stream DDR signaling and/or effector pathways would likely be

disabled during the progression to advanced leukemia. To test

these predictions, we analyzed BM biopsies from three patients

with confirmed MLL-rearranged AML (obtained at the time of

diagnosis, Table S2) and from five healthy BM donors. Paraffin

sections were stained for pATR, pATM, gH2AX, and p21CIP1 by

immunohistochemistry. Interestingly, the majority of MLL BM

cells showed strong positivity for pATM and pATR in most

leukemia cells, in contrast to the largely negative staining in the

normal control samples. These findings indicate that activation
528 Cancer Cell 21, 517–531, April 17, 2012 ª2012 Elsevier Inc.
of the DDR pathway does occur also during human MLL leuke-

mogenesis, thereby supporting the relevance of our mouse

model. Although the upstream signaling kinases ATM and ATR

were still activated in leukemia blasts, the downstream effector

events, documented here by attenuated gH2AX and the lack of

the p53 target p21CIP1 (Figure S5E), were consistent with the

need to neutralize the DDR barrier to allow progression to full

malignancy.

DISCUSSION

This study contributes to better understanding of multistep

tumorigenesis and the basis for long latency of cancer develop-

ment in vivo. Our data provide insights into the mechanism of

transformation by Mll fusion oncogenes with emphasis on

cellular antitumor barriers to emergence of a LSC population in

a mouse model in vivo.

Using our Mll-ENL-ERtm mouse model, we show that MLL-

ENL triggers myeloproliferation with a potential to transform to

acute leukemia. Although the aberrantly proliferating myeloid

cells display differentiated morphology, a subpopulation of cells

coexpressing both lineage (Mac-1) and stem cell (c-Kit) surface

markers emerges at the early stage of transformation. These

findings argue for a previous suggestion that MLL fusion onco-

genes can reactivate stem cell properties in a context of more

differentiated progenitors (Krivtsov et al., 2006). Furthermore,

we show that such aberrantly reactivated proliferation/self-

renewal triggers DDR and cellular senescence, reminiscent of

intrinsic antitumor barrier mechanisms suggested to operate in

solid tumors (Halazonetis et al., 2008). Our model also allows

to study the interplay of DDR and inflammatory antitumor

barriers (Campisi and d’Adda di Fagagna, 2007; Bartek et al.,

2008) in response to MLL-ENL in a disease stage-specific

manner and natural settings in vivo. In addition, we found

tissue-dependent properties of the leukemogenesis barrier

mechanisms in BM versus spleen, indicating that such fail-safe

mechanisms are influenced by factors provided by the local

tissue microenvironment.

Our results implicate the DDR checkpoint machinery as

a crucial fail-safe mechanism that guards against progression

of MLL-ENL-immortalized myeloid cells into AML. In the early,

proliferative phase of the disease, we found the ATR-Chk1

kinase module as the activated upstream signaling cascade

(monitored by three markers: pATRT1989, pATRS428, and

pChk1S345), consistent with hyperproliferation and ensuing

replication-associated stress. This was evident in both spleen

and BM; however, the latter tissue showed a greater extent of

hyperproliferation and also activation of ATM, the kinase that

responds to DNA DSBs (Kastan and Bartek, 2004) and is acti-

vated in early lesions among diverse human solid tumors (Hala-

zonetis et al., 2008). The more prominent overall DDR activation,

including the active ATM-p53-p21CIP1 pathway, correlated with

more robust senescence phenotype at the later stages of the

MLL-ENL-induced disease in the BM, compared to milder

DDR response and only moderate senescence in the spleen.

Thus, it appears that the exclusive ATR signaling as seen in

the spleen can result in a balanced state of concomitant

partial proliferation and limited degree of senescence, whereas

the combined ATR/ATM-mediated robust DDR can lead to
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pronounced proliferation arrest and senescence phenotype in

the BM. Notably, the weaker DDR and senescence in the spleen

apparently provides less protection against leukemia, because

the features of terminal malignancy, if developed, were primarily

manifested in the spleen.

The observed gradual increase in DDR activation associated

with enhanced activation of the ATM kinase as the Mll-ENL-

ERtm BM cells transit from proliferation to senescence corre-

lated with a transcription response involving immediate early

response genes (Egr1, Ier2, Junb, Zfp36) and inflammatory

factor genes (Cxcl2, Ccl3, Il1b, Tnfa). We propose that ATM-

mediated signaling reflects a higher, suprathreshold level of

DNAdamage in aberrantly proliferating BMcells, and plays a crit-

ical role in the amplification and maintenance of the DDR

signaling with impact on transcription of a set of inflammatory

genes. This interpretation is consistent with our result that

Egr1, Cxcl2, and Ccl3 are induced rapidly upon DNA-damaging

treatments. In turn, both CXCL2- and CCL3-mediated signaling

enhances DDR in cultured MLL-ENL-ERtm-immortalized cells,

and we suggest that these factors might play the same role

in vivo. Consistently with recent studies implicating the feedback

loop signals from DDR to cytokine and cytokine receptor genes

(Bartek et al., 2008), our data indicate that ATM-mediated DDR

may act in a self-autonomous regulatory loop with CXCL2 and

CCL3 to boost the p53/p21CIP1 checkpoint response and

impose cell cycle arrest in damaged cells. Indeed, Egr1, Cxcl2,

and Ccl3 are induced promptly in response to DNA damage in

MLL-ENL-ERtm-immortalized cells, at a time preceding p53

activation suggesting a possible coregulation of these genes in

a p53-independent, DDR-dependent manner. This is consistent

with previous reports that EGR-1 is required for p53-mediated

apoptosis under stress conditions and in replicative senescence,

and activates inflammatory cytokines (Krones-Herzig et al.,

2003; Yan et al., 2000). We propose that EGR-1 might be a point

of convergence between DDR and activation of chemokines

Cxcl2 and Ccl3 (see model Figure 7H).

Our results document that in vivo treatment with caffeine,

a dual ATM/ATR inhibitor prevented induction of the MLL-

ENL-induced senescence in premalignant state and promoted

acquisition of self-renewal capacity, establishment of LSCs

and development of aggressive AML with a short latency. This

is consistent with a recent report that p53 deficiency promotes

transformation of committed myeloid progenitors into LSCs, by

allowing acquisition of self-renewal (Zhao et al., 2010). Reduced

expression of DDR markers in the tissues of caffeine-treated

mice suggests that caffeine-mediated inhibition of ATM/ATR-

signaling and prevention of p53 activation might be the decisive

event that allows the shift to a malignant phenotype. In other

words, DDR emerges as a signaling pathway that modulates

the balance between senescence and acquisition of stem cell

properties in immortalized pre-LSCs in the context of the

MLL-ENL-ERtm-driven oncogenesis in vivo. Although we

cannot exclude that some additional caffeine-targeted mecha-

nism(s) might be involved in leukemia development, the natural

selection process in our mouse model leading to AML in asso-

ciation with attenuation or loss of downstream DDR events

supports our conclusion that inhibition of ATM/ATR-signaling

plays a major role in caffeine-mediated acceleration of

leukemogenesis.
Our data also point to a crucial role of the local tissue microen-

vironment in modulation of cell-fate choices in Mll-ENL-ERtm

pre-LSCs. Inflammatory factors and their feedback loop with

DDR help to fine tune such a choice toward senescence (Fig-

ure 7H). Our study provides a valuable link between inflammation

and the kinetics of LSC development. In this context, it is note-

worthy, that p53 loss apparently did not accelerate leukemogen-

esis when MLL-ENL was expressed from a retroviral promoter

(Zuber et al., 2009). This difference could be attributable to

high level of the oncogene that might override cellular check-

points and increase the malignant potential regardless of p53

status.

We also speculate that upregulation of crucial homeostatic

regulators such as Egr1, Junb, and Zfp36 could potentially add

an additional layer of regulation to the complexity of activated

fail-safe mechanisms against leukemic transformation by MLL-

ENL. Interestingly, EGR-1 regulates the cell cycle machinery in

HSC to maintain quiescence, thereby preventing self-renewal

and migration (Min et al., 2008). JUNB limits HSC proliferation

and counteracts LSC properties (Santaguida et al., 2009; Steidl

et al., 2006). In the hematopoietic system, Zfp36 is upregulated

during commitment fromHSC toMPP, and thus correlates nega-

tively with self-renewal, while promoting differentiation (Forsberg

et al., 2010). Considered with our present data, we hypothesize

that these transcription regulators might play a role in balancing

the acquisition of LSC properties (self-renewal and migration) in

lineage-committed progenitors.

In conclusion, our study extends the emerging concept of

DDR activation as an inducible barrier against activated onco-

genes and tumor progression, from solid tumors to hematolog-

ical malignancies (Bartkova et al., 2005; Gorgoulis et al., 2005;

Wajapeyee et al., 2010; Boehrer et al., 2009) under in vivo condi-

tions in mice. Furthermore, our present results have important

implications for understanding the tumor-suppressive role of

DDR and cell-microenvironment regulatory interactions that

modulate the fate of pre-LSCs and multistep development of

MLL. We also report activation of DDR in clinical samples of

human MLL blasts, accompanied by attenuated effector path-

way(s) in such fully developed leukemia. Taken together with

our mouse model, these results are consistent with a potential

biological role of the DDR machinery in preventing the transition

of the initiating pre-LSC population into a fully transformed pop-

ulation with LSC properties. These findings support the notion

that uncoupling of DDR signaling from downstream checkpoint

responses may allow preleukemia cells to acquire the patholog-

ical capacity for self-renewal. Selection for cells that avoid the full

impact of DDR signaling during leukemia development is rele-

vant both conceptually, and with respect to clinical responses

to standard-of-care genotoxic therapy.

EXPERIMENTAL PROCEDURES

Generation of the Mll-ENL-ERtm Knock-In ESC Clone

The creation of the mouse Mll-ENL-ERtm knock-in allele by gene targeting in

mouse ESCs, Southern blot analyses, and generation of mice were performed

as described in Supplemental Experimental Procedures.

Tissue Culture

Mouse ESCs were cultured as described in Supplemental Experimental

Procedures. Mll-ENL-ERtm BM cells were cultured in RPMI (high glucose,
Cancer Cell 21, 517–531, April 17, 2012 ª2012 Elsevier Inc. 529
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glutamax, sodium pyruvate) supplemented with 10% FBS (GIBCO), 10 ng/ml

GM-CSF (Biosource), 10 ng/ml G-CSF (Biosource), and 100 nM 4-oht (Sigma).

32Dcl3 mouse BM cell line was cultured in RPMI (high glucose, glutamax,

sodium pyruvate) supplemented with 10% FBS (GIBCO) and 10 ng/ml IL-3

(Biosource). Recombinant mouse CXCL2, CCL3, TNF-a, and IL-1b were

purchased from R&D Systems and used at a final concentration of 50 ng/ml.

Cells were irradiated with a single dose of 4 Gy IR or 20 Jm�2 UV.

Mice

All mice were housed and treated at the Animal Research Facility at Faculty of

Medicine and Dentistry, Palacky University in Olomouc. Animal experiments

were approved by the institutional care and use committees for animal

research. Mice were treated with TAM (Sigma) in concentration of 300 mg/kg

chow. Mice were treated with caffeine (Sigma) in concentration of 0.4 mg/ml

drinking water (Bartkova et al., 2006; Lu et al., 2008). BrdU (Sigma) was dis-

solved in sterile water and injected intraperitoneally in a dose of 100 mg/kg.

Mice were analyzed 2 hr after injection.

Transplantation Assay

A total of 1–2 3 107 spleen cells were injected intravenously into SCID recip-

ients treated with TAM in concentration of 100 mg/kg chow. Mice were moni-

tored for disease development. Kaplan-Meier statistical analysis with log rank

test was used to compare survival curves.

Methylcellulose Culture

Colony forming and replating assays were performed as described in Supple-

mental Experimental Procedures.

FACS Analysis

Labeling of cells for FACS was performed on ice in phosphate-buffered saline

(PBS) supplemented with 0.5% bovine serum albumin (BSA) (Sigma) using

conjugated antibodies purchased from BD Pharmingen. Details of the anti-

bodies used can be found in Supplemental Experimental Procedures.

RT-PCR

RT-PCRwas performedwith the Stratagene Brilliant II SYBRMaster Mix. Each

sample was analyzed in triplicate using cDNA corresponding to 10 ng of total

RNA reverse transcribed with Superscript III (Invitrogen) according to the

manufacturer’s recommendations.

Quantitative RT-PCR

Total tissue RNA was isolated using the RNeasy kit (QIAGEN). Reverse tran-

scription was performed using the First Strand cDNA Transcriptor Synthesis

kit (Roche). RT-PCR detection was performed using the Universal ProbeLi-

brary probe/primers sets in triplicate for each sample and reactions were run

on the LightCycler 480 system (Roche). Ywhaz and Gapdh were used as

a reference for all reactions. Relative expression was calculated by the

2DDCT method.

Gene Expression Microarray and Bioinformatics Analyses

Total tissue RNA was isolated as described above. RNA was amplified,

labeled, and hybridized to Mouse 430A 2.0 genomic arrays (Affymetrix). Differ-

ential expression analysis and normalization of chip data was performed in the

R statistical environment (The R Project for Statistical Computing, version

2.9.2) using the Limma and Affy packages from Bioconductor project (http://

www.bioconductor.org). Differentially expressed genes were identified using

lmFit function (moderated t statistics) and Benjamini-Hochberg corrected

(p < 0.05). GO analysis were conducted using Database for Annotation, Visu-

alization and Integrated Discovery (DAVID) (http://david.abcc.ncifcrf.gov/). For

GO and heatmap, only genes with at least 1.5-fold difference between aver-

ages of the Mll-ENL-ERtm and the corresponding wild-type sample group

were selected.

Immunofluorescence Analysis

Cells were fixed on glass slides in 3% paraformaldehyde at room temperature

(RT) for 15 min, permeabilized in methanol at –20�C for 10 min and air-dried,

incubated in 1% or 10% BSA (optional) in PBS for 1 hr at RT, followed by

primary antibodies at 4�C overnight. Alexa Fluor-conjugated secondary anti-
530 Cancer Cell 21, 517–531, April 17, 2012 ª2012 Elsevier Inc.
bodies were incubated at RT for 1 hr. Antibodies used are listed in Supple-

mental Experimental Procedures. For Mac-1/BrdU double staining, cells

were first stained for Mac-1 as described above, fixed again in 3% paraformal-

dehyde and then DNA was denatured in 2 M HCl for 30 min at 37�C. After
neutralization in PBS, samples were blocked with 1% BSA in PBS and incu-

bated with the anti-BrdU antibody conjugated with Alexa594 dye (Invitrogen)

for 1 hr at RT. Images were acquired using an Olympus BX51 inverted micro-

scope equipped a ColorViewIII digital CCD camera. Validation of antibodies to

pATRS428 and pATRT1989 is shown in Figure S3B.

Immunohistochemistry

Formalin-fixed tissueswere paraffin embedded, sectioned at 3–5 mm, andH&E

stained. Immunohistochemical analyseswere performed as described in detail

in the Supplemental Experimental Procedures.

Senescence Assay

Cytospin preparations of BM cells and cryostat spleen sections were used.

SA-b-gal was detected by the Senescence detection kit (Calbiochem) accord-

ing to manufacturer’s instructions.

Human Samples

Human BM samples were obtained from the Department of Clinical and

Molecular Pathology, University Hospital Olomouc (UHOL), Olomouc, Czech

Republic. Diagnostic data related to patient samples were provided by the

Department of Hemato-Oncology, UHOL. The original examinations were ob-

tained with the approval of the IRB committee of the UHOL and according to

the Declaration of Helsinki. Additional information on patient samples is avail-

able in Table S2.
ACCESSION NUMBERS

Microarray data have been deposited at the Gene Expression Omnibus

(GSE35038).
SUPPLEMENTAL INFORMATION

Supplemental Information includes five figures, two tables, and Supplemental

Experimental Procedures and can be found with this article online at

doi:10.1016/j.ccr.2012.01.021.
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