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Abstract: Newborn screening (NBS) of inborn errors of metabolism (IEMs) is based on the reference
ranges established on a healthy newborn population using quantile statistics of molar concentra-
tions of biomarkers and their ratios. The aim of this paper is to investigate whether multivariate
independent component analysis (ICA) is a useful tool for the analysis of NBS data, and also to
address the structure of the calculated ICA scores. NBS data were obtained from a routine NBS
program performed between 2013 and 2022. ICA was tested on 10,213/150 free-diseased controls
and 77/20 patients (9/3 different IEMs) in the discovery/validation phases, respectively. The same
model computed during the discovery phase was used in the validation phase to confirm its validity.
The plots of ICA scores were constructed, and the results were evaluated based on 5sd levels. Patient
samples from 7/3 different diseases were clearly identified as 5sd-outlying from control groups in
both phases of the study. Two IEMs containing only one patient each were separated at the 3sd level
in the discovery phase. Moreover, in one latent variable, the effect of neonatal birth weight was
evident. The results strongly suggest that ICA, together with an interpretation derived from values
of the “average member of the score structure”, is generally applicable and has the potential to be
included in the decision process in the NBS program.

Keywords: newborn screening; independent component analysis; mass spectrometry; multivariate
statistical analysis; inborn errors of metabolism; compositional data analysis

1. Introduction

Inborn errors of metabolism (IEMs) are caused by an enzyme deficiency that usually
leads to the accumulation of substrates of the defective enzyme. Nearly 1900 diseases are
currently classified in this group. Newborn screening (NBS) is an active and widespread
search for diseases in their early, preclinical stages so that these diseases can be diagnosed
and treated before they become manifest and cause irreversible damage to a child’s health.

In the screening of IEMs, flow injection–tandem mass spectrometry analysis is used to
quantify specific analytes (amino acids, acylcarnitines) which are diagnostically relevant
to the diseases in question [1]. The data evaluation is performed using reference ranges
established on a healthy newborn population using quantile statistics of untransformed
data. The key diagnostic biomarkers of IEMs are elevated levels of substrates of defective
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enzymes. The first introduced screening program detected phenylketonuria (PKU) patients
using a bacterial inhibition assay for (semi)quantitative analysis of phenylalanine (Phe)
in dried blood spots [2]. Besides reference ranges for individual diagnostic metabolites,
their mutual ratios [3] are applied as a post-analytical tool. The cutoff target ranges of
analytes and ratios are then defined as selected percentiles of the control and diseased
populations. When overlaps occur, adjustments are made to optimize sensitivity and
specificity considering Wilson and Jungner criteria [4].

The first application of amino acid relations used in diagnostics was the phenylala-
nine/tyrosine (Phe/Tyr) ratio (substrate and product of the defective enzymatic conversion,
respectively) for the detection of PKU heterozygous carriers [5]. This approach was suc-
cessfully applied to NBS, lowering substantially (to 25%) false positives [6,7] compared to
evaluation based on the absolute concentration of Phe alone. Since its introduction, several
ratios were suggested for screening of medium-chain acyl-CoA dehydrogenase deficiency
(MCAD) [8] and/or carnitine palmitoyltransferase II deficiency (CPTII) [9,10]. Similarly,
ratios for screening pyruvate dehydrogenase complex deficiencies and other mitochondrial
disorders associated with lactic acidosis and variably elevated alanine (Ala) and proline
(Pro) levels have recently been proposed [11]. The authors used strictly ketogenic amino
acid leucine (Leu) and lysine (Lys), not involved in the glycolytic pathway generating
pyruvate, for “normalizing metabolites in quantitative analysis of Ala and Pro” [11] and
forming diagnostically effective Ala/Leu and Pro/Leu ratios. In the field of IEMs, the
developed diagnostic ratios generally correct for sampling variability (including the hemat-
ocrit effect) and elucidate substrate/product relations (e.g., proximal Phe/Tyr ratio; distant
in case of linear enzymatic pathways, e.g., octanoylcarnitine (C8) and acetylcarnitine (C2)
acylcarnitines). In the Czech Republic, the NBS program targets 15 IEMs listed in Table 1.

Table 1. List of diseases measured using mass spectrometry included in newborn screening in the
Czech Republic.

Disease * Primary Biomarkers Secondary Biomarkers Number of Patients
(Discovery/Validation Set)

PKU Phe, Phe/Tyr - 54/16
MSUD Xle, Xle/Ala, (Xle + Val)/Pro + Tyr) Val 7/0
MCAD C8, C8/C2 C10, C10:1, C6, C8/C10 7/3
LCHAD C16-OH, C18:1-OH C18-OH 4/0
VLCAD C14:1, C14:1/C16 C14 1/0

CPT I C0, C0/(C16 + C18) C18, C18:1, C16 -
CPT II/CACT ** C16, (C16 + C18:1)/C2 C18, C18:1, C0 -

GA I C5DC, C5DC/C16 C5DC/C8 1/0
IVA C5, C5/C8 C5/C2 1/0

HCY(CBS) Met, Met/Phe - -
HCY(MTHFR) Met, Met/Phe, - 1/0

ARG Arg, Arg/Orn, Arg/Phe - -
CIT/ASA ** Cit, Cit/Phe, Orn/Cit, ArgSucc - 1/1

* For a complete list of OMIM numbers, names of diseases, and their incidence see Table S1. Full names of metabolites:
Phenylalanine (Phe), Tyrosine (Tyr), Leucine/Isoleucine (Xle), Alanine (Ala), Valine (Val), Proline (Pro), Octanoyl-
carnitine (C8), Acetylcarnitine (C2), Decanoylcarnitine (C10), Decenoylcarnitine (C10:1), Hexanoylcarnitine (C6), 3-
Hydroxypalmitoylcarnitine (C16-OH), 3-Hydroxyoleoylcarnitine (C18:1-OH), 3-Hydroxystearoylcarnitine (C18-OH),
Tetradecenoylcarnitine (C14:1), Palmitoylcarnitine (C16), Tetradecanoylcarnitine (C14), Carnitine free (C0), Stearoyl-
carnitine (C18), Oleoylcarnitine (C18:1), Glutarylcarnitine (C5DC), Isovalerylcarnitine/Methylbutyrylcarnitine (C5),
Methionine (Met), Arginine (Arg), Ornithine (Orn), Citrulline (Cit), Argininosuccinate (ArgSucc). ** two distinctive
metabolic diseases indistinguishable by screening biomarkers.

In general, it is expected that the metabolic findings in patients are atypical compared
to the healthy population. For this reason, the data from patients can be understood as
outlying observations. The above-described routine approach to NBS, based on reference
ranges of individual metabolites or their mutual ratios, uses only marginal information from
the metabolic profile, which technically represents a multivariate observation. Therefore, it
essentially provides an incomplete picture, and univariate outlier detection methods are
missing (for example, outliers where the interplay between variables is atypical). Classical
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multivariate outlier detection tools are usually based on the Mahalanobis distance which,
however, scales badly with increasing dimension [12]. Hence, given the dimensionality
of the NBS data, dimension reduction prior to outlier detection seems a natural way to
proceed. On the other hand, traditionally used unsupervised dimension reduction methods
like principal component analysis (PCA) might not always be suitable as, for example,
outliers do not necessarily need to be found in the direction of high variations, representing
the main aim of the method.

The aim of this study is the application of independent component analysis (ICA) on
metabolic NBS data, as a multivariate alternative to the traditional methods based on uni-
variate reference ranges established on prior knowledge of the disease biomarker behavior
and percentile statistics. The structure of the ICA scores with the aim of investigating their
potential to elucidate metabolic relations of the probands is addressed and a comparison
with the traditional methods is provided.

We applied ICA on data obtained in a routine newborn screening program performed
between 2013 and 2022 in the Czech metabolic screening center in Olomouc. The reason
for choosing ICA is that it maximizes non-Gaussianity in the data while searching for
independent components, which is beneficial in our context where atypical observations
are usually acknowledged regarding the Gaussian distribution. Therefore, we suggest con-
sidering the mean ± 5sd rule for the computed independent components as an alternative
to the univariate reference ranges of the original variables (i.e., metabolites). Moreover, ICA
could potentially reveal other unknown important metabolite ratios theoretically usable in
classical newborn screening.

2. Materials and Methods
2.1. Patients and Samples

The anonymized samples were processed as separate discovery (years 2011–2020,
10,213 disease-free controls and 77 patients suffering from nine different diseases) and
validation (years 2021–2022, 150 controls and 20 patients; see Table 1) studies. Blood
samples were collected from newborns to the screening cards (Whatman 903) 48–72 h after
birth and transported to the laboratory. Samples were prepared according to the CE-IVD
kit from Chromsystems (order no. 57000). Discs (3 mm diameter) were punched out from
the cards and placed in the 96-well microtiter plate. The extraction buffer (100 µL) with
internal standard was added to each sample. The plates were covered with foil, shaken
(600 rpm) for 20 min at laboratory temperature, and then centrifuged (10 min at 2000 rpm).
The supernatant was used for the analysis.

2.2. DBS Analysis by Mass Spectrometry

Mass spectrometric analysis was performed using LC-MS API 4000 Ultimate 3000
RS (Sciex). Amino acids and acylcarnitines were determined in dry blood spots using the
above-mentioned CE-IVD kit. The analytical method is routinely used in the laboratory for
screening more than 30,000 newborns per year and is accredited according to ISO 15,189
and participates in ERNDIM and Newborn Screening Quality Assurance Program (NSQAP)
quality control schemes. Concentrations of 26 amino acids and acylcarnitines used for
screening purposes in the Czech Republic were determined and used for further analyses
(Table S2). Data were centered and normalized by log-ratio (clr) transformation without
any additional pre-processing steps.

2.3. Data Analysis—ICA

The statistical processing of the data is based on ICA and was done with the help of the
software R [13] using fICA [14] and robCompositions [15] packages. ICA in general looks
for a set of latent variables zi, which have the form of linear combinations of the measured
variables (metabolites) xk. The main property of the latent vector z is that its components
are standardized, independent, and likely to follow a non-Gaussian distribution looking
as non-Gaussian as possible. Therefore, the method can typically reveal complex sources
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of outlyingness or groupings within the data [16]. Formally written, the independent
component model assumes that the observable p-variate vector x is linked with the p latent
components as Az + b, where A is a nonsingular matrix (i.e., square matrix with non-zero
determinant) and b is a location vector, which can be understood as a vector of means of x.
The method, in consequence, searches for a matrix W, called unmixing matrix, which would
identify the latent structures as W(x − b). The resulting vector z is then given uniquely up
to the sign and order of its components. There are several strategies on how to estimate
the unmixing matrix W; some of them are listed in [17] together with a more detailed
description of the method. Our case study is based on the adaptive deflation-based FastICA
approach [18] which maximizes the non-Gaussianity of the latent components using the
most suitable non-Gaussianity measure for each component separately.

The first step of almost all ICA methods is whitening where the data are standardized
and uncorrelated. For that purpose, the covariance matrix of the data needs to be full rank,
i.e., nonsingular. Similar to the approach used in [17], we treat the metabolomic data as
relative-valued and the final algorithm thus combines ICA with the principles of compo-
sitional data analysis [19]. So-called centered log-ratio (clr) coefficients give the natural
representation of relative-valued (compositional) data. Within this representation, each
of the original variables xk corresponds to one coefficient clr(x k) of the form ln(x k/g(x)),
with g(x) denoting the geometric mean of the whole vector x. This results in a favorable
interpretation in the sense of relative dominance of the given part xk over the whole com-
position (metabolic profile). On the other hand, the construction of the clr coefficients also
implies its zero-sum property, which prevents its direct use in the ICA algorithm as it results
in a singular data matrix. An alternative representation is given by the family of isometric
log-ratio (ilr) coordinates. This representation characterizes the compositional vector x by a
system of p − 1 orthonormal (i.e., orthogonal, with a unit norm) real-valued coordinates,
given as ilr(x) = VT ln(x), with V being a p × (p − 1) matrix, called contrast matrix. This
coordinate system overcomes the problem of singularity and is, therefore, popularly used
in a wide range of multivariate statistical methods, including those relying on the full rank
assumption. A detailed description of the construction and properties of this coordinate
system is given (e.g., in [19]); however, let us emphasize that the clr and ilr representations
are mutually transferable through the contrast matrix V as ilr(x) = VTclr(x). Accordingly,
the results obtained from the ilr representation can be transformed into the clr space and
interpreted there. Note also here that the clr results are invariant to the chosen ilr basis.

Following the strategy described in [17], first, the unmixing matrix Wilr is estimated
for the whitened ilr representation of the data (we used the system of pivot coordinates,
see [20] for details) and consequently rotated as Wclr = WilrVT. The rows of Wclr can be
then understood as loading vectors, specifying the contribution of the clr coefficients (i.e.,
the relative dominance of the respective compositional parts) to the overall values of the
latent components called scores. A positive loading determines that the increase in the
relative dominance of the respective compositional part results in an increase in the score.
The increase in the relative dominance of parts with a negative loading corresponds to
the decrease in the score. More specifically, the (p − 1)-dimensional vector of scores z is
for a patient/control sample with measurement x equal to Wclr

(
clr(x)− bclr

)
, with bclr

standing for the mean clr vector.
For formal decision making, the component-wise rule mean(zi)± κ·sd(zi), i = 1, . . . , p−

1 is employed to decide if an observation is in the direction of the i-th latent variable (in-
dependent component, ICi) appearing as an outlier. We follow here [21] and use median
and median absolute deviation (mad) instead of classical estimates of mean and sd as this
avoids the masking effects of outliers. Consequently, the estimates of sd(zi) are derived
from mads as 1.4826·mad(zi) [22]. The tuning parameter value κ is used to decide how
extreme observations are considered outlying. Based on the training data, this value was
set to be 5, as the 5sd rule reflects the low proportion of patients within the sample and, in
comparison to the 3 or 4sd rule, yields the best separation of patients from controls.
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3. Results and Discussion

It is to be expected that ICA, by its nature, projects patients with individual diseases
in separate ICs, as each of the diseases affects the metabolic profile differently. In order to
gain better insight into which roles the individual metabolites play in the calculations and
to be able to relate them to the routine criteria based on reference ranges of biomarkers or
their ratios, we propose looking at the structure of an “average score”.

Average score zj
i of the i-th IC, computed for the j-th group of patients with the

individual disease or the group of controls can be written as:

zj
i =

p

∑
k=1

Wclr
[i,k]

(
clr(xk)

j − bclr
k

)
=

p

∑
k=1

kaj
ICi ,

where i = 1, . . . , p − 1 is an index of the IC of the interest and j ranges over the groups
of patients/controls. Wclr

[i,k] stands for the entry of the clr unmixing matrix at the position
[i, k]; therefore, it gives the value of loading respective to the i-th IC and the k-th metabolite,

k = 1, . . . , p. Finally, clr(xk)
j

equals the mean clr value of the k-th metabolite computed
within the j-th group, while bclr

k denotes its overall mean (the k-th entry of the clr mean
vector bclr).

Even though it is not a general feature of ICA, which is within its estimation phase
completely unaware of the grouping (i.e., unsupervised), based on the above formula, we
can understand the loadings as weights allowing for emphasizing the differences among
the individual studied groups within the given IC.

Let us further introduce the concept of “an average member of the score structure”
(AMSS). To be able to better describe the sources of (possible) outlyingness of the j-th group
of patients/controls in the direction of the i-th latent variable, a system of AMSS values

kaj
ICi is computed as Wclr

[i,k]

(
clr(xk)

j − bclr
k

)
, k = 1, . . . , p. Each of these values quantifies

the contribution of the k-th metabolite to the respective mean score zj
i .

3.1. Interpretation of Components

In Table S2, there are values of AMSS (including classical sd where applicable; calcu-
lated as variance of kaj

ICi) computed for all the studied groups in the first 16 ICs (out of
25), which leads to the best separation of patients/controls. In the following paragraphs,
AMSS values for those groups which create separated clusters in the given IC (i.e., a control
group vs. one of the patient groups) are sorted and compared. This provides information
on which metabolites contribute the most to the separation in terms of the clr coefficients of
the measurements. Furthermore, the investigation of AMSS across all the studied groups
presents an opportunity for a direct comparison of the effects revealed by ICA to the
routinely used approach based on NBS biomarkers.

3.1.1. IC1—MCADD × VLCAD/LCHAD/IVA/GAI

In NBS, patients with MCAD are identified by elevated levels of octanoylcarnitine
(C8) and its ratio to acetylcarnitine (C8/C2) as primary markers. Other secondary mark-
ers C8/decanoylcarnitine (C10), hexanoylcarnitine (C6), and decenoylcarnitine (C10:1)
were suggested; however, these biomarkers are only supportive in the decision-making
process [8].

The first latent variable IC1 clearly separates the group of MCAD patients, character-
ized by its highly negative value (Figure 1A). According to the AMSS values, collected in
Table S2, this separation is mainly given by significantly lower C8aMCAD

IC1 in comparison
to the same value computed for the control group, C8acontrol

IC1 . The second primary applied
diagnostic biomarker of MCAD is C8/C2 ratio. In our data, values of AMSS for C2 are
similar between the patients and healthy controls, C2aMCAD

IC1 of −0.028 vs. C2acontrol
IC1 of 0.000,

and the sd is very low for both groups (0.012 and 0.010, respectively). In this ratio, C2



Int. J. Neonatal Screen. 2023, 9, 60 6 of 14

performs as a “reference/anchoring metabolite” (unaffected by the disease and reflecting
the general status of the organism) whose level is stable between controls and patients.
Other metabolites and their ratios are used as secondary diagnostic markers and serve
mainly to confirm the diagnosis, such as C6, C10, C10:1, and C8/C10 ratio. The differences
in the AMSS values of these metabolites are not as high as for the C8 primary marker
(see Table S2), but they also affect the separation of the two groups. Contrary to C6 and
C8, C10aMCAD

IC1 alone shifts the MCAD group more into positive values, thus worsening
the separation of the two groups, although patients show elevated concentration levels
compared to healthy controls.
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In the loadings table (included in Table S2), some metabolites with no obvious patho-
biochemical connection to MCAD, e.g., tetradecanoylcarnitine (C14) and tetradecenoyl-
carnitine (C14:1), are also enhanced with a non-zero loading value. It can be observed
that the increased loadings correspond to different AMSS values for patients suffering
from Very long-chain acyl-CoA dehydrogenase deficiency (VLCAD), i.e., slightly higher

C14aVLCAD
IC1 and C14:1aVLCAD

IC1 . The result of this is a minor separation of the VLCAD group
in IC1 (less than 5sd; similarly with C14:1aLCHAD

IC1 for Long-chain 3-hydroxyacyl-coenzyme
A dehydrogenase deficiency (LCHAD), C5aIVA

IC1 for Isovaleric acidemia (IVA), and C5DCaGAI
IC1

for Glutaric aciduria I (GAI) patients), since loadings perform as “general weights” of the
metabolites. Hence, it should be noted that by looking only at loadings, as is typically
done, for example, for PCA, one may not be able to reveal the sources for the separation
of a specific group of patients. In such a case, it is the table of AMSS values, which are
computed for each group separately, that helps with a better understanding of the general
picture.

3.1.2. IC2—PKU × MSUD

In IC2, there is a clear separation of PKU patients and controls. The routine diagnostic
biomarkers based on the logic of the enzyme defects (Phenylalanine hydroxylase (PAH)
in classical PKU and other tetrahydrobiopterin-turnover-related hyperphenylalaninemias
(Table S1)) are Phe, and Phe to Tyr ratio. The concentration levels of Phe are increased
since Phe is not converted to Tyr by PAH. Therefore, Tyr levels may be disproportional to
increased Phe levels in PKU patients (statistically significant decrease in Tyr observed in
PKU patients in our data; Welch Two Sample t-test, p = 1.098 × 10−7), which is reflected
in Phe/Tyr ratio. In Table S2, the biggest difference in AMSS values can be observed
between PheaPKU

IC2 equal to −9.149 and Pheacontrol
IC2 equal to 0.043. Thus, PKU patients are

shifted to negative values in the ICA score plot (Figure 1A). Values of TyraPKU
IC2 and Tyracontrol

IC2
are almost similar for the two groups (−0.201 for patients and 0.001 for healthy controls,
respectively) pointing to Tyr generally working in NBS as a reference metabolite in the
Phe/Tyr ratio.

One healthy control sample from NBS is located in the area exceeding the 5sd threshold
near the PKU group. This patient has a Phe concentration of 119.99 µmol L−1 and Phe/Tyr
ratio of 2.04. Since the cutoff values in NBS routine procedure for Phe and Phe/Tyr ratio
are, respectively, 120 µmol L−1 and 2, the patient did not exceed both parameters and was
therefore flagged as “negative” in the screening despite his values being borderline.

A secondary effect in IC2 is a minor separation of Maple syrup urine disease (MSUD)
patients, who are further better clustered in IC4 and described under that section. The sepa-
ration here is due to increased loadings of clr coefficients of metabolites leucine/isoleucine
(Xle) and valine (Val) (biomarkers of MSUD). The values of AMSS in MSUD patients
compared to all other groups (Table S2), namely XleaMSUD

IC2 and Vala
MSUD
IC2 , corroborate the

similar nature of this effect as was the case with C14aVLCAD
IC1 and C14:1aVLCAD

IC1 .

3.1.3. IC3—LCHAD × GAI

Elevated levels of C16-OH, C18-OH, and C18:1-OH are hallmarks of LCHAD deficiency
patients in screening programs. These biomarkers are reflected in the reduced values of

C16−0HaLCHAD
IC3 , C18−0HaLCHAD

IC3 , and C18:1−0HaLCHAD
IC3 compared to all other groups (Table S2),

which shift the patient’s group into negative values in the ICA score plot (Figure 1B).
GAI patients are separated in the opposite direction compared to LCHAD patients in

IC3. Due to the increased concentration levels of GAI biomarker glutarylcarnitine (C5DC)
and its positive C5DCaGAI

IC3 value (Table S2), the GAI patient is well separated from all other
patients and the control group (Figure 1B) in the positive scores.

3.1.4. IC4—MSUD × IVA

In IC4, the separation of MSUD and IVA patients can be observed. MSUD patients are
characterized by increased Xle and Val values. The positive AMSS values of the biomarkers
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in these patients, XleaMSUD
IC4 and Vala

MSUD
IC4 (Table S2), compared to the other groups result

in their separation from the mass by shifting them further to the positive values in ICA
score plot (Figure 1B).

Among the highest AMSS values, there is also an increased C5aMSUD
IC4 which corre-

sponds to a reduction in C5 concentrations in MSUD patients (statistically significant
decrease; Welch Two Sample t-test, p = 2.311 × 10−5). With respect to C5 having the highest
negative loading value in IC4 (see Table S2, note the opposite sign of C5 and Xle and Val
loadings), it significantly contributes to the resulting high scores of MSUD patients com-
pared to the rest of the data. Moreover, the C5/Xle ratio has been previously described [23]
as a ratio detected by the CLIR Productivity Tools [24] in the data from NBS for MSUD in
the Netherlands. The authors concluded that “the C5/Xle ratio is predominantly deter-
mined by the Xle concentration, and is not of added value”. This statement is slightly in
disagreement with our results, where the effect of a reduction in C5 concentration itself can
be observed. Thus, the C5/Xle ratio detected by CLIR may be a suitable parameter for the
screening.

IVA patients show elevated C5 values. Strongly negative loading of C5 shifts the
respective C5aIVA

IC4 value as well as the IC4 scores of the IVA patient to the negative values.
IVA is described in more detail under section IC8 where the patient is separated without
the loadings being highly influenced by other diseases.

3.1.5. IC5—Weights

The clustering visible in IC5 (Figure 1C) was described in a previous publication [17],
where loadings of C16, Val, C18:1, C18OH, and C0 discriminated patients with low birth
weight. This finding is not at all straightforward and further research is necessary.

3.1.6. IC6—GAI

The highly negative value of C5DCaGAI
IC6 for the analyte C5DC (primary routine NBS

biomarker increased in GAI patients) causes a clear separation of the GAI patient in the
ICA score plot from all other groups (Figure 1C, Table S2). The second screening measure
routinely used in NBS to diagnose GAI patients is C5DC/C16 ratio (Table 1). The C16aj

IC6
(where j ranges over all studied groups) is very similar among all patients and controls,
showing C16 together with low sd as one of the viable “reference metabolites” in this
component (Table S2).

In the opposite direction to the GAI patient, one PKU patient exceeds 5sd due to low
C5DC concentration.

3.1.7. IC7—ASA

In IC7, a patient with Argininosuccinic aciduria (ASA; detectable in NBS based on
increased levels of Citrulline (Cit) and Argininosuccinate (ArgSucc)) is separated. AMSS
values of the two associated analytes, Cita

ASA
IC7 and ArgSuccaASA

IC7 , are higher for this patient
compared to all other groups, assigning the ASA patient a positive score in ICA score plot
(Figure 1D, Table S2).

3.1.8. IC8—IVA

In NBS, IVA patients are detected using increased levels of C5 concentration and
C5/C8 and C5/C2 ratios. The only distinctly separated patient on the y-axis of Figure 1D is
an IVA case. The negative C5aIVA

IC8 value compared to other groups and similar values for
“reference metabolites” C8 (except for the group of MCAD patients, where it is a substrate
of defective enzymatic reaction; see Section 3.1.1) and C2 across the groups, C8aj

IC8 and

C2aj
IC8, support the use of these analytes in denominators of the biomarker ratios in NBS

(Table S2).
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3.1.9. Other ICs

Starting from the independent component 9, score plots (Figure S1) show a spread
distribution of healthy control samples with no apparent distinguishing of screened disor-
ders vs. controls (there are no patients exceeding the 5sd threshold). This behavior reflects
the fact that components from ICA are post-computationally ordered according to their
kurtosis value. Due to this sorting, the first ICs show distributions with heavy tails and
are, therefore, expected to find outlying values or unequal sized groups, while the last ICs
indicate light-tailed distributions. It seems that the boundary for distinguishing individual
groups separated from the mass is located just in IC9 for this data set.

Only a few controls are exceeding 5sd which, however, cannot be explained from the
limited data legally available in the NBS program (i.e., birth weight, sampling age, sex, and
a restricted set of acylcarnitines and amino acids measured).

3.2. Principal Component Analysis

Principal component analysis (PCA), as a gold standard of the dimension reduction
methods, was applied on the data (projection using the first two components is given in
Figure 2). In order to respect the relative nature of the data, the compositional version of
PCA, based on the clr representation, was used [25]. The variance explained by the first
components is quite high given the sample size (cumulatively around 40% for the first two
PCs; Figure S2; on the other hand, the ability to identify individual groups of patients is
rather poor. If the “usual metabolomic approach” was applied, where only the first two or
three PCs are usually plotted, a mere two of the nine IEMs present in our data would be
identified as separate clusters. Therefore, all pairwise combinations of the total 25 principal
components are depicted in a scatter plot (Figure S3).
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Groups of LCHAD and MCAD patients are identified in the first two components;
IVA is an outlier visible in the PC5, ASA patient is separated in PC10, and GAI can be
observed in PC11. On the other hand, the biggest group of PKU patients is not clearly
clustered apart from the main group of controls in any of the components. The most visible
separation of the PKU group is in the combination of PC13 and PC15 where the patients
still partially overlap with controls. This corresponds to the continuity of Phe and Tyr
values (i.e., there is no gap between the patient and control groups). MSUD patients are
best separated from the main cloud in the combination of PC13 and PC14, while patients
suffering homocystinuria due to deficiency of N(5,10)-methylenetetrahydrofolate reductase
activity (MTHFR) and VLCAD patients are not clearly separated at all (see also Section 3.3).
The overall separation of individual groups is much worse for PCA than for ICA. This is
to be expected as non-Gaussianity, the criterion of ICA, is much more natural for outlier
detection than variation, the criterion of PCA. Deflation-based ICA as used here can also be
seen as a projection pursuit (PP) method and its connection to be a blind estimator of the
linear discriminant was recently shown in [26].

3.3. Comparison of Diagnostic Performance with the Routine Screening Procedure

False positive rates (FPRs) of ICA using cutoff values based on standard deviations
3sd, 4sd, and 5sd together with FPR of the routine screening procedure are given in Table 2.
In our data, an FPR with the tuning parameter set to 4sd provides results comparable to
the routine screening procedure [27] while 5sd yields better diagnostic performance (FPR
of 0% for all diseases except PKU with FPR of 0.0089%). However, patients and controls
in the study are defined based on the metabolic diagnostic criteria used, and this does
not guarantee a “correct” classification. Therefore, the two methods cannot be properly
compared on the basis of FPR since it is not possible to retrospectively test and attempt to
diagnose patients labelled as “false positive” using the ICA method, as these are healthy
subjects according to standard screening and it is not ethically acceptable.

Table 2. Comparison of false positive rate of ICA method with standard screening evaluation.

IC Group −3SD FPR
ICA

−3SD
FPR ICA

−4SD
FPR ICA

−4SD
FPR ICA

−5SD
FPR ICA

−5SD
FPR ICA

FPR David et al.,
2019 [27]

FPR Olomouc
2017–2021

IC 1 MCAD 26 0.255% 4 0.039% 0 0.000% 0.002% 0.000%
IC 2 PKU 11 0.108% 4 0.039% 1 0.010% 0.027% 0.003%
IC 3 LCHAD 3 0.029% 0 0.000% 0 0.000% 0.000% 0.001%
IC 4 IVA 7 0.069% 1 0.010% 0 0.000% 0.008% 0.004%
IC 5 weights * 0 0.000% 0 0.000% 0 0.000% --- ---
IC 6 GAI 19 0.186% 2 0.020% 0 0.000% 0.003% 0.003%
IC 7 --- 0 0.000% 0 0.000% 0 0.000% --- ---
IC 8 IVA 4 0.039% 0 0.000% 0 0.000% 0.008% 0.004%

IC Group +3SD FPR
ICA

+3SD FPR
ICA

+4SD FPR
ICA

+4SD FPR
ICA

+5SD FPR
ICA

+5SD FPR
ICA

FPR David et al.,
2019 [27]

FPR Olomouc
2017–2021

IC 1 VLCAD/IVA/GAI 1 0.010% 0 0.000% 0 0.000% 0.007/0.008/0.003% 0.008/0.004/0.003%
IC 2 MSUD 3 0.029% 0 0.000% 0 0.000% 0.010% 0.019%
IC 3 GAI 3 0.029% 0 0.000% 0 0.000% 0.003% 0.003%
IC 4 MSUD 1 0.010% 0 0.000% 0 0.000% 0.010% 0.019%
IC 5 weights * 123 1.204% 85 0.832% 41 0.401% --- ---
IC 6 --- 0 0.000% 0 0.000% 0 0.000% --- ---
IC 7 CIT ** 3 0.029% 0 0.000% 0 0.000% 0.006% 0.014%
IC 8 --- 2 0.020% 0 0.000% 0 0.000% --- ---

FPR David et al., 2019: [27] The percentage of newborns with a final negative result (after recall—repeated DBS
sampling) was presented as the false positive rate (FPR). Data collected from newborn screening laboratories
in the Czech Republic (2010–2017). FPR calculated from 888,891 samples. FPR Olomouc 2017–2021: total FPF
consisting of FPR after the first measurement and FPR after recall. FPR calculated from 160,951 samples. * In this
IC, patients with birth weight below 1500 g are separated [17], ** CIT David et al., 2019: FPR calculated from
181,396 samples (2016–2017).

Increasing the cutoff value to obtain a better FPR increases the potential risk of false
negative results in the data. In the course of a prospective study, it will therefore be
necessary to establish “decision cutoff values for individual components” for the projected
diseases. The interplay between sensitivity and selectivity and the importance of their
proper adjustment is clearly visible in VLCAD and MSUD patients. By raising the threshold
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to 4sd, one VLCAD patient is not clearly separated (IC1, Figure 1A). Similarly, when shifting
to 5sd, one MSUD patient is not correctly identified (IC4, Figure 1B). The special case is the
patient with MTHFR, who is not clearly separated in any component constructed by other
diseases and does not form a separate component in the discovery phase. As a diagnostic
metabolic change, patients exhibit increased levels of homocysteine (hCys) and mildly
elevated Met, and Met/Phe ratio. In routine screening, these patients are selected for Met,
and Met/Phe ratio with relatively low cutoff. Approximately 1–2% of the patients admitted
for the screening are selected for following second-tier testing based on the measurement of
hCys level as a specific biomarker compared to methionine. It is expected that the patient
with MTHFR could not be detected since hCys is lacking within the screening, and there
was only a mild elevation in nonspecific methionine.

ICA could be classified as an interpretable machine learning method that is increas-
ingly used in newborn screening [28]. From that point of view, it could be emphasized that
deciphering repetitive biochemical anomalies detected in components, with no apparent
association with screened diseases, in prospective study could improve understanding and
efficiency of newborn screening.

3.4. Validation Study

The validation study included a total of 20 patients suffering from three metabolic
disorders diagnosed in our NBS center in 2021 and 2022 as well as 150 healthy control sub-
jects. In the given period, our screening center diagnosed 16 patients with PKU, 3 patients
with MCAD, and 1 patient with ASA (Table 1). A validation study was performed using
the calculated IC loadings from the discovery data to confirm the ability of the method to
diagnose new patients with given IEMs (Table S3).

A full 5sd separation of these diseases was observed in the respective ICs only (i.e.,
IC1, IC2, and IC7; Figures 3 and S4). The pattern of the AMSS values (Table S3) of the most
discriminating metabolites for given groups of patients and controls always shows a high
degree of similarity with Table S1. In IC1, MCAD patients were separated from disease-free
controls mainly due to decreased C6aMCAD

IC1 and C8aMCAD
IC1 . Low values of PheaPKU

IC2 resulted
in a nice separation of PKU patients and control samples in IC2. Increased Cita

ASA
IC7 and

ArgSuccaASA
IC7 values for the ASA patient compared to Cita

control
IC7 and ArgSuccacontrol

IC7 indicate
his separation in IC7.

The results strongly suggest that the IC loadings together with AMSS values are
generally applicable between measurements and thus can be used for the diagnosis of
unknown samples in the NBS program.

Given the stability of the results of the ICA method, the metabolite structures identified
by AMSS values reflect known interrelationships among biomarkers used in NBS. This
allows for a deeper understanding of the pathobiochemistry of the diseases and avoids the
necessity of recomputations with each NBS sample batch.

As emphasized in Section 3.3, comparison of diagnostic performance of the method
with the traditional approach can only be done by long-term analysis of differentially
classified patients.
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4. Conclusions

The newborn screening program is based on predefined ranges/cutoff values of
biomarker molar concentrations. In contrast, ICA is a multivariate statistical method
using information about all the metabolites measured. Employing the introduced ICA
approach, the coordinate structures calculated from the discovery data were applied to the
validation data set containing patients suffering IEMs, together with disease-free control
samples. Since the positive patients of the study were selected based on reference methods,
it could be considered as a “gold standard” here. ICA detected all the positive patients
in the validation study while providing lower FPR (using 5sd threshold). Long-term
application of ICA paralleled with the standard methods in the newborn screening setting
will provide further insight into the practical utility of the method. However, in general the
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results demonstrated the potential use of this method as an alternative approach in routine
newborn screening.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijns9040060/s1, Figure S1: Score plots IC9–16 discovery study;
Figure S2: PCA scatter plot; Figure S3: PCA scree plot; Figure S4: Score plots IC9–16 validation study;
Table S1: List of IEMs; Table S2: Loadings and AMSS values discovery study; Table S3: Loadings and
AMSS values validation study.

Author Contributions: Š.K.: Writing—Original Draft Preparation, Data Curation. J.d.S.: Writing—
Original Draft Preparation, Formal Analysis. K.F.: Conceptualization, Methodology, Writing—Review
and Editing. A.G.: Writing—Original Draft Preparation, Formal Analysis. C.M.: Data Curation, Software,
Formal Analysis, Visualization. K.N.: Methodology, Supervision, Writing—Review and Editing. D.F.:
Conceptualization, Supervision, Writing—Review and Editing. T.A.: Conceptualization, Project Adminis-
tration, Supervision, Writing—Review and Editing. All authors have read and agreed to the published
version of the manuscript.

Funding: This study was funded by the Czech Ministry of Health, project AZV NU20-08-00367 (Š.K.,
J.D.S., A.G., D.F. and T.A.), the Czech Science Foundation, project 22-15684L (K.F.) and the Austrian
Science Fund P31881-N32 (C.M. and K.N.).

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the ethics committee of the Medical Faculty of Palacký University and
University Hospital Olomouc (66-19, 17 June 2019).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chace, D.H.; Kalas, T.A.; Naylor, E.W. Use of tandem mass spectrometry for multianalyte screening of dried blood specimens

from newborns. Clin. Chem. 2003, 49, 1797–1817. [CrossRef]
2. Maccready, R.A.; Hussey, M.G. Newborn phenylketonuria detection program in Massachusetts. Am. J. Public Health Nations

Health 1964, 54, 2075–2081. [CrossRef]
3. McHugh, D.M.S.; Cameron, C.A.; Abdenur, J.E.; Abdulrahman, M.; Adair, O.; Al Nuaimi, S.A.; Åhlman, H.; Allen, J.J.; Antonozzi,

I.; Archer, S.; et al. Clinical validation of cutoff target ranges in newborn screening of metabolic disorders by tandem mass
spectrometry: A worldwide collaborative project. Genet. Med. 2011, 13, 230–254. [CrossRef] [PubMed]

4. Hsia, D.Y.Y. Phenylketonuria: The phenylalanine-tyrosine ratio in the detection of the heterozygous carrier. J. Ment. Defic. Res.
1958, 2, 8–16. [CrossRef] [PubMed]

5. Wilson, J.M.G.; Jungner, G. Principles and Practice of Screening for Disease; World Health Organization: Geneva, Switzerland, 1968.
6. Chace, D.H.; Millington, D.S.; Terada, N.; Kahler, S.G.; Roe, C.R.; Hofman, L.F. Rapid diagnosis of phenylketonuria by quantitative

analysis for phenylalanine and tyrosine in neonatal blood spots by tandem mass spectrometry. Clin. Chem. 1993, 39, 66–71.
[CrossRef] [PubMed]

7. Eastman, J.; Sherwin, J.; Wong, R.; Liao, C.; Currier, R.; Lorey, F.; Cunningham, G. Use of the phenylalanine:tyrosine ratio to
test newborns for phenylketonuria in a large public health screening programme. J. Med. Screen. 2000, 7, 131–135. [CrossRef]
[PubMed]

8. Jager, E.A.; Kuijpers, M.M.; Bosch, A.M.; Mulder, M.F.; Gozalbo, E.R.; Visser, G.; de Vries, M.; Williams, M.; Waterham, H.R.;
van Spronsen, F.J.; et al. A nationwide retrospective observational study of population newborn screening for medium-chain
acyl-CoA dehydrogenase (MCAD) deficiency in the Netherlands. J. Inherit. Metab. Dis. 2019, 42, 890–897. [CrossRef]

9. Tajima, G.; Hara, K.; Tsumura, M.; Kagawa, R.; Okada, S.; Sakura, N.; Maruyama, S.; Noguchi, A.; Awaya, T.; Ishige, M.; et al.
Newborn screening for carnitine palmitoyltransferase II deficiency using (C16+C18:1)/C2: Evaluation of additional indices for
adequate sensitivity and lower false-positivity. Mol. Genet. Metab. 2017, 122, 67–75. [CrossRef]

10. De Sain-van der Velden, M.G.M.; Rinaldo, P.; Elvers, B.; Henderson, M.; Walter, J.H.; Prinsen, B.H.C.M.T.; Verhoeven-Duif, N.M.;
de Koning, T.J.; van Hasselt, P. The Proline/Citrulline Ratio as a Biomarker for OAT Deficiency in Early Infancy. JIMD Rep. 2012,
6, 95–99. [CrossRef]

11. Bedoyan, J.K.; Hage, R.; Shin, H.K.; Linard, S.; Ferren, E.; Ducich, N.; Wilson, K.; Lehman, A.; Schillaci, L.; Manickam, K.; et al.
Utility of specific amino acid ratios in screening for pyruvate dehydrogenase complex deficiencies and other mitochondrial
disorders associated with congenital lactic acidosis and newborn screening prospects. JIMD Rep. 2020, 56, 70–81. [CrossRef]

https://www.mdpi.com/article/10.3390/ijns9040060/s1
https://www.mdpi.com/article/10.3390/ijns9040060/s1
https://doi.org/10.1373/clinchem.2003.022178
https://doi.org/10.2105/AJPH.54.12.2075
https://doi.org/10.1097/GIM.0b013e31820d5e67
https://www.ncbi.nlm.nih.gov/pubmed/21325949
https://doi.org/10.1111/j.1365-2788.1958.tb00380.x
https://www.ncbi.nlm.nih.gov/pubmed/13576048
https://doi.org/10.1093/clinchem/39.1.66
https://www.ncbi.nlm.nih.gov/pubmed/8419060
https://doi.org/10.1136/jms.7.3.131
https://www.ncbi.nlm.nih.gov/pubmed/11126161
https://doi.org/10.1002/jimd.12102
https://doi.org/10.1016/j.ymgme.2017.07.011
https://doi.org/10.1007/8904_2011_122
https://doi.org/10.1002/jmd2.12153


Int. J. Neonatal Screen. 2023, 9, 60 14 of 14

12. Archimbaud, A.; Nordhausen, K.; Ruiz-Gazen, A. ICS for multivariate outlier detection with application to quality control.
Comput. Stat. Data Anal. 2018, 128, 184–199. [CrossRef]

13. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria,
2023. Available online: https://www.R-project.org/ (accessed on 8 March 2022).

14. Miettinen, J.; Nordhausen, K.; Taskinen, S. fICA: FastICA Algorithms and Their Improved Variants. R J. 2018, 10, 148–158.
[CrossRef]

15. Templ, M.; Hron, K.; Filzmoser, P. robCompositions: An R-package for robust statistical analysis of compositional data. In
Compositional Data Analysis: Theory and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2011; pp. 341–355. [CrossRef]

16. Nordhausen, K.; Oja, H. Independent component analysis: A statistical perspective. WIREs Comput. Stat. 2018, 10, e1440.
[CrossRef]
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