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Ministerstvo Školství, Ml�adeže a
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Abstract

Molecules are complex dynamic objects that can exist in different molecular

forms (conformations, tautomers, stereoisomers, protonation states, etc.) and

often it is not known which molecular form is responsible for observed physi-

cochemical and biological properties of a given molecule. This raises the prob-

lem of the selection of the correct molecular form for machine learning

modeling of target properties. The same problem is common to biological mol-

ecules (RNA, DNA, proteins)—long sequences where only key segments,

which often cannot be located precisely, are involved in biological functions.

Multi-instance machine learning (MIL) is an efficient approach for solving

problems where objects under study cannot be uniquely represented by a sin-

gle instance, but rather by a set of multiple alternative instances. Multi-

instance learning was formalized in 1997 and motivated by the problem of

conformation selection in drug activity prediction tasks. Since then MIL has

found a lot of applications in various domains, such as information retrieval,

computer vision, signal processing, bankruptcy prediction, and so on. In the

given review we describe the MIL framework and its applications to the tasks

associated with ambiguity in the representation of small and biological mole-

cules in chemoinformatics and bioinformatics. We have collected examples

that demonstrate the advantages of MIL over the traditional single-instance

learning (SIL) approach. Special attention was paid to the ability of MIL

models to identify key instances responsible for a modeling property.
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1 | INTRODUCTION

In “structure–property” modeling each molecule is encoded by a set of numerical chemical descriptors used as an input
to machine learning (ML) algorithms establishing a correlation between descriptors and the property or biological activ-
ity. One of the key limitations of traditional “structure–property” modeling is the requirement that each molecule has to
be represented by a single instance with a fixed conformation, stereoconfiguration, protonation, and tautomeric states
and associated with a single vector of descriptors. However, a molecule is a dynamic object that simultaneously exists in
many forms/instances in equilibrium, which raises the problem of the selection of molecular form(s) responsible for the
observed property. This creates a contradiction that is resolved most often by a representation of molecules as two-
dimensional (2D) molecular graphs as well as through the standardization of molecular forms whose importance was
repeatedly shown.1 Descriptors derived from this representation describe mainly the atomic composition and topology of
a chosen fixed molecular form. The 2D descriptors ignore the spatial molecular structure of compounds and their confor-
mational flexibility but to some extent can encode stereoconfiguration. However, they cannot represent mixtures of ste-
reoisomers which is a highly important issue for drug development because different stereoisomers can trigger different
responses and it is not always possible to estimate which stereoisomer is preferable, for example, with molecular docking
(the three-dimensional [3D] structure of a protein can be unavailable). Canonicalization (canonical tautomeric represen-
tation, molecule neutralization, etc.) is a somewhat artificial choice of molecular representation because the equilibrium
or transition between molecular forms may exist. Therefore, some important structural information that could increase
the predictive ability of models may be lost. The modeling of such systems today is either impossible or very difficult.

A similar problem exists in the modeling of functions of biological molecules (RNA, DNA, proteins), that are
sequences of monomer units (amino acids or nucleotides). However, only particular segments of these sequences
are responsible for the interaction between biological molecules, and experimental information on the exact location of
key segments is often not available. This also leads to the problem of many alternative representations of biological mol-
ecules, which is often neglected in traditional modeling approaches.

This problem can be handled by multi-instance machine learning (MIL).2 The main idea of MIL2 is to represent an
object as a set of alternative instances (called a bag), each encoded by its vector of features. In contrast to traditional
single-instance learning (SIL) (Figure 1a), the task is to establish a correlation between the bag of the instances and the
bag label (Figure 1b).

FIGURE 1 Single-instance versus multi-instance machine learning. An object can be a molecule, protein,

DNA, or RNA while instances can be conformations, atoms, isoforms, subsequences, and so on. In single-instance modeling, an object is

represented by a single instance chosen by a researcher and is encoded by a feature vector. In multi-instance learning, every object is

represented by a set (bag) of instances where each instance is encoded by its own feature vector.
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Some of the problems studied can be attributed to multi-instance learning problem3 but were not formalized as MIL
in the original papers. These were chemical structure determination by mass spectroscopy (multiple interpretations for
each peak in the mass-abundance curve),4 adaptive alignment in drug activity prediction (multiple conformations of a
molecule),5 modeling DNA promoter sequences (multiple transcriptional start sites in DNA promoter),6 phoneme rec-
ognition (multiple segments of spoken letters),7 and recognition of handwritten characters (multiple pose or location of
the characters).8 In 1997, Dietterich et al.2 formalized the MIL problem. Their article was motivated by the drug activity
prediction problem, which is related to MIL by the fact that a molecule can be represented by multiple alternative con-
formations, and it is not known which one is responsible for the observed biological effect. In the same paper,2 they
proposed an algorithm for the direct solution of multi-instance problems (see details in Section 5.1).

Since the seminal paper of Dietterich et al,2 numerous MIL algorithms have been developed and applied in various
domains, such as drug discovery (pharmacy), classification of text documents (information retrieval), classification of
images (computer vision), speaker identification (signal processing), bankruptcy prediction (economy), and so on.9–11

However, MIL still has not become a popular approach in chemoinformatics and only a few studies on its application
to structure–property modeling have been reported so far.2,5,12–21 In bioinformatics, MIL has attracted significantly
more attention, because of a large number of tasks22–35 perfectly fitting the MIL framework.

The main goal of MIL algorithms is to establish correlations between bags of instances and bag labels. Another
important question concerns the identification of key instances that determine or have the greatest contribution to the
label of the bag. The key instance detection (KID) problem was formulated in Ref. [36] and it is even more challenging
than the prediction of the bag label since not all MIL algorithms can solve it. Also, many MIL algorithms ignore the
relationship between instances in a bag because they consider the instances as independent and identically distributed
(i.i.d) samples.37 In this context, instances are i.i.d. if they have the same probability distribution and are mutually inde-
pendent. In the majority of chemoinformatics and bioinformatics tasks, instances can be considered as mutually
independent, for example, prediction of biological activity based on ensembles of conformations. However, in some
cases, this should not be neglected, for example, prediction of a property of a molecule using atoms as instances. In this
case, atoms may mutually influence each other which affects the modeling property. These aspects of MIL distinguish
it from traditional SIL and require specific solutions, which were addressed in many studies.38

Despite the attractiveness of the MIL approach for some tasks, no comprehensive review of its application to the
modeling of molecular properties/functions has been published so far. Here, we describe the MIL framework and algo-
rithms, as well as some applications in chemoinformatics and bioinformatics.

2 | ORIGINS OF MULTI-INSTANCE LEARNING

Multi-instance learning is a suitable learning framework for tasks where the modeled object is difficult to represent
with a single instance and a feature vector. The sort of problems, where an object is associated with multiple alternative
representations, can be attributed to polymorphism ambiguity (Figure 2a). In “structure–property” modeling, this type
of ambiguity arises when a molecule can be represented by alternative instances, such as conformations, tautomers,

FIGURE 2 Types of ambiguity in tasks related to modeling molecular properties and functions: (a) polymorphism ambiguity, (b) part-

to-whole ambiguity, and (c) segment-to-sequence ambiguity.

ZANKOV ET AL. 3 of 27

 17590884, 2024, 1, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
cm

s.1698 by C
ochrane France, W

iley O
nline L

ibrary on [12/06/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



protonation states, and so on. The wrong choice of the key molecular form in SIL can result in the poor performance of
predictive models. Thus, Masand et al.39 demonstrated that the selection of the tautomeric form of a compound signifi-
cantly influences the descriptor selection process, as well as the performance of QSAR models. According to a study by
Toropova et al.,40 accounting for both the keto- and enol-forms improves the prediction accuracy of the anxiolytic activ-
ity, compared with the models accounting for only one of the two tautomeric forms.

Another problem where MIL is applicable is characterized by a part-to-whole ambiguity (Figure 2b) where only one
or several parts of a modeled object are responsible for its observed property. In this context, a molecule can be thought
of as a set of atoms (instances), where its physicochemical or biological properties are generally influenced by a single
atom or a group of atoms, and it is often not known which atoms determine the observed property of a molecule.12

Such problems can be solved using “local” descriptors41 describing atoms responsible for a particular property, for
example, halogen or hydrogen basicity. In this case, H-bonded and halogen-bonded atoms should be explicitly labeled.

MIL is also a quite popular modeling approach in bioinformatics, where modeled objects—biological molecules
(RNA, DNA, and proteins) are sequences of monomeric units (nucleotides or amino acids), and often only a particular
segment of a sequence is responsible for the biological function of a whole molecule, but the exact location of such seg-
ments may be unknown. In the MIL framework, biological molecules can be represented by multiple alternative
segments (instances) encoded by a special feature vector. This type of problem can be attributed to segment-to-sequence
ambiguity (Figure 2c).

Other multi-instance problems include multi-multi-instance learning,42 multi-instance multi-label learning,43 key
instance detection in multi-instance learning,36 multi-instance clustering,44 and multi-instance ranking.20 Mutli-
multi-instance learning encodes objects as nested bags, for example in text categorization a text can be represented as a
bag of sentences, and each sentence as a bag of words.42 Relatively to chemoinformatics, we may suppose to represent
a molecule as a set of tautomers where every tautomer is represented by a set of conformations. Thus, a model will
decide which tautomers and conformations are relevant for a modeling property. Other mentioned methods are exten-
sions or adaptations of conventional ones applicable to single-instance learning. Comprehensive reviews of the MIL
concept and its applications in regular ML tasks can be found in reviews.9–11,38,45–49

3 | MULTI-INSTANCE LEARNING ALGORITHMS

The growing number of MIL algorithms requires their systematization. This review follows a categorization of algo-
rithms similar to one proposed by Amores45 and Herrera11 (other types of categorization of MI algorithms are described
in Refs. 11,46,50,51) and distinguishes two major groups of MIL algorithms—instance-based (instance-level) and bag-
based (bag-level). We chose this categorization because it is widely accepted in the MIL community and corresponds to
chemoinformatics and bioinformatics applications.

The instance-based algorithms consider each instance as a separate training object generate predictions for each
instance in the bag, and then apply a predefined rule (an aggregation function) to aggregate the instance predictions
into a prediction for the whole bag. In contrast, the bag-based algorithms consider the whole bag as a training object
and provide a prediction for the bag without explicit predictions for individual instances. The bag-based algorithms can
be based (i) on the definition of a distance between bags,52 bag similarities and kernels,53 bag dissimilarities,54 or (ii) on
the aggregation of instances to obtain a bag representation using pooling operations (mean, weighted mean, sum, etc.).

Here, we consider three types of MIL algorithms: wrappers, conventional, and neural-network algorithms. Wrap-
pers transform a multi-instance problem into a single-instance one. Conventional algorithms correspond to either
multi-instance adaptations of classical single-instance algorithms (tree-based methods, SVM-based methods, nearest
neighbors, etc.) or original algorithms specially designed for solving MIL problems. Also, there exist many specific
architectures of neural networks adapted to MIL problems.

3.1 | Benchmarking datasets

In the domain of chemoinformatics, two benchmarking datasets were widely accepted and used by the MIL community
to validate models. These datasets (MUSK1 and MUSK2) are related to the prediction of molecule bioactivity, particu-
larly to the prediction of the human perception of the musk odor. They were collected and published by Dietterich
et al. in their seminal papers.2,5 The MUSK1 dataset contains 47 musk and 45 non-musk compounds. The MUSK2

4 of 27 ZANKOV ET AL.

 17590884, 2024, 1, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
cm

s.1698 by C
ochrane France, W

iley O
nline L

ibrary on [12/06/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



dataset contains 39 musk and 63 non-musk compounds. These datasets share 72 common compounds. Compounds
were collected from literature and the authors kept only those compounds that occurred in at least two publications
and all musk judgments agreed. For compounds from the MUSK1 dataset only low-energy conformations were retained
and the total number of kept conformations was 476. For compounds from the MUSK2 dataset, the authors kept all
generated conformations to better outline the complexity of the task. The total number of conformations was 6598.
MUSK1 and MUSK2 datasets are accessible by these links: https://archive.ics.uci.edu/dataset/74/musk+version+1,
https://archive.ics.uci.edu/dataset/75/musk+version+2. These datasets were widely used to validate approaches which
will be discussed below and therefore we described them in detail.

The MUSK datasets are of limited size, making them unsuitable for benchmarking contemporary neural network
models, which typically necessitate substantial training data. Within the fields of chemoinformatics and bioinformatics,
there are no other widely accepted benchmark datasets. Recent efforts under the Therapeutics Data Commons (TDC)
initiative55 have yielded datasets attributed to multi-instance problems, accessible at https://tdcommons.ai/multi_pred_
tasks/overview. These datasets contained information about pairs of molecules causing particular responses or associ-
ated with a particular attribute. Examples include drug–drug interactions causing side effects or synergistic effects (DDI
and DrugSyn datasets), drug-protein pairs with associated affinity values (DTI dataset), protein–protein interactions
(PPI dataset and others), and more. It is worth noting that the authors of these datasets have not provided information
regarding what should be considered instances in each case. In certain scenarios, components of a pair may be inter-
preted as instances. For instance, when a specific side effect results from the combination of two drugs in DDI dataset,
these drugs can be considered as individual instances, as the role and the contribution of each drug to the effect remain
unknown. In the PPI dataset, individual proteins can be represented by sets (bags) of subsequences (instances). How-
ever, the determination of what constitutes an instance is challenging in some cases. For instance, the TDC Catalyst
dataset supplies information about a mixture of reactants and a mixture of products, with the task objective being the
prediction of the suitable catalyst mixture. In this case, mixtures of reactants and products can hardly be considered as
individual instances due to their specific roles in a chemical reaction. Furthermore, it is imperative to acknowledge the
overall quality of these datasets. Notably, the TDC Catalyst dataset contains numerous solvents falsely labeled as cata-
lysts. Other issues related to data curation and normalization have also been observed. Consequently, users are advised
to exercise caution when utilizing these datasets.

Many other datasets were widely used for validation of MIL models but all of them are from other domains (image
analysis, text classification, etc.) and we do not include their descriptions here, but an interested reader may find refer-
ences for them in these publications.9,45

3.2 | Multi-instance wrappers

Multi-instance wrappers transform multi-instance data into a single-instance representation used as input to the
machine learning algorithm. These types of algorithms are universal and can be coupled with any ML approach. There
are two types of wrapper algorithms: instance-based and bag-based wrapper algorithms (Figure 3).

In Instance-wrapper (Figure 3a) a label of a bag is assigned to all its instances and a conventional single-instance
model is built to predict labels of individual instances. The predicted label for a new bag results from averaging the
instances predictions or application of other aggregation functions, e.g. max function.

In the Bag-wrapper (Figure 3b) algorithm, a single vector representing the bag is generated by aggregation of
instances, usually by regular or weighted averaging. Then, any ML algorithm can be applied to train the model on
aggregated representations of bags. In the prediction mode, all instances of a new bag are aggregated into a single repre-
sentation, which is used as input to obtain a prediction for the given bag.

3.3 | Conventional MIL algorithms

Several regular machine learning algorithms were adapted to process raw multi-instance data: maximum likelihood-
based methods,56–59 decision rules and tree-based methods,60–63 SVM-based methods,48 and evolutionary-based
methods.64

For example, Citation-kNN52 is an extended version of the kNN algorithm for the bag space. In Citation-kNN, the
classification of a new bag is based on the nearest bag from the training set, whereas the Hausdorff distance is used as
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the distance function between the bags. The Hausdorff distance is the largest distance out of the set of all distances
between each instance of one bag to the closest instance of the other bag. In other words, two bags are close if every
instance of either bag is close to some instance of the other bag. Another example is the bag-level kernels, which can be
used in a standard SVM to optimize the margin between bag classes. For example in Ref. 53, each bag is transformed to
a minimax vector based on the minimum and maximum feature values of instances in each bag. Then any instance-
level kernel and standard SVM can be applied to find the optimal margin between classes. ID3-MI and RipperMI60 are
the MIL extensions of the decision tree, and decision rules approach. They use all instances as individual and indepen-
dent training samples and a bag is predicted as positive if at least one instance was predicted positive, otherwise a bag is
predicted as negative.

Other algorithms were specially designed to solve MIL problems, for example, Diverse Density (DD)56 algorithms.
This is a maximum likelihood-based approach that implements an assumption that positive instances occupy a specific
area in the feature space. For example, one has a 2D feature space, where individual instances are depicted as shapes
(Figure 4). The algorithm searches for points of high diverse density (e.g., point A) where many different positive bags
are close to those points and instances of negative bags are far away. This point is a prototype instance that is a general-
ization of instances of positive bags. If any instance of a given bag is closer to the prototype instance than a threshold,
the bag is classified as positive. Expectation–Maximization Diverse Density (EM-DD)57 uses the EM algorithm to locate
the prototype instances more efficiently. There exist several other MI algorithms based on the Diverse Density
approach, such as DD-SVM65 and MILES.66

3.4 | Neural network-based MIL algorithms

Neural networks perform multi-instance learning in an end-to-end manner in which a bag with a various number of
instances serves as an input. The modern approaches often generate bag embedding, that is, latent vector representing
the bag based on the vector representation of instances, but in early approaches, other adaptations of neural networks
were applied. Multi-instance neural networks (MI-NN) were first described by Ramon et al.67 for classification prob-
lems. To calculate the bag label probability, they suggested aggregating computed instance probabilities by the log-
sum-exp operator. Zhou et al.68 modified MI-NN by employing a loss function capturing the nature of multi-instance
learning, that is, weights of the network are updated for each training bag rather than for each training instance. Later,
this neural network architecture was improved by adopting feature scaling with Diverse Density and feature reduction

FIGURE 3 (a,b) Modeling workflow implying instance- and bag-wrapper MIL algorithms. An object can be a molecule, protein, DNA,

or RNA while instances can be conformations, atoms, isoforms, subsequences, and so on. Every object is represented by a set (bag) of

instances where each instance is encoded by its feature vector. SIL algorithm denotes any conventional single-instance learning algorithm

(e.g., Random Forest or Support Vector Machine). Prediction and instance aggregation can be performed by the mean function, however,

other pooling functions may be also applicable.
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by principal component analysis.69 Ensemble neural networks70 and RBF neural networks71 were suggested to tackle
MIL problems. Zhang et al.72 reported an implementation in MI-NN as a loss function for the MIL regression task.

In contrast to the abovementioned MI-NN, Wang et al.73 focused on generating bag representations from instances.
The bag-level network (Bag-net, Figure 5b) generates instance latent vectors that are further aggregated using max,
sum, or log-sum-exp pooling operators into bag representation which in turn is used to make the bag label prediction by
the last fully-connected layer with one output neuron. The instance-level (Instance-net, Figure 5a) network generates
instance labels, that are then aggregated by a pooling operator. These two types of neural networks demonstrated simi-
lar classification accuracy on benchmark datasets.73 Integration in MI-NN of some popular deep learning tricks (deep

FIGURE 4 Illustration of the Diversity Density approach in a two-dimensional feature space. Point A is a point of high diversity density

where instances of many positive bags (green) are close and instances of negative bags (red) are far. Gray lines connecting instances of every

object were just used to better highlight instances belonging to the same object.

FIGURE 5 (a,b) The architecture of instance- and bag-based multi-instance neural networks. An object can be a molecule, protein,

DNA, or RNA while instances can be conformations, atoms, isoforms, subsequences, and so on. Every object is represented by a set (bag) of

instances where each instance is encoded by its feature vector. Commonly used aggregation functions are max, sum, log-sum-exp, and mean.
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supervision and residual connections) improved the classification accuracy. According to Wang et al.,73 bag-level net-
works (Figure 5b) outperform instance-level networks (Figure 5a) on popular MIL benchmark datasets belonging to
localized content-based image retrieval and text categorization tasks. However, for bioactivity prediction benchmarks
MUSK1 and MUSK2 they performed comparably well: classification accuracy was 0.889 and 0.858 for instance-level
networks and 0.887 and 0.859 for bag-level networks for MUSK1 and MUSK2 datasets, respectively.

Traditional pooling operators (max, sum, or log-sum-exp) have a clear limitation, that is, they are pre-defined and
non-learnable. The max-pooling operator could be effective in aggregating instance scores but might be inappropriate
for the aggregation of instance feature vectors in bag-level algorithms. Similarly, the mean pooling operator might be
unsuitable to aggregate instance scores but could succeed in generating the aggregated bag representation.

Ilse et al.74 proposed an attention-based pooling operator, that replaces pre-defined pooling operators with a train-
able attention network that can generate instance weights, which quantify the importance of each instance and its con-
tribution to the aggregated bag representation (Figure 6). A dynamic pooling75 was inspired by the Routing Algorithm
from Capsule Networks76 and iteratively updates instance contribution to aggregated bag representation. In Ref. 77 a
new pooling operator based on the LSTM recurrent neural network was proposed. The LSTM memory mechanism
allows to accumulation of information after processing each instance representation to iteratively update the bag repre-
sentation. This approach achieved a mean error rate of 2.04–7.4 in such classification tasks as multiple digit occurrence,
single digit counting, and outlier detection in the MNIST data set78 and outperformed attention-based74 (mean error
rate = 11.9–37.4) and dynamic pooling75 methods (mean error rate = 25.4–40.9). However, it was not applied to
chemoinformatics or bioinformatics tasks.

Set Transformer79,80 based on a multi-head self-attention mechanism was also proposed as a tool for multi-instance
learning. This method outperformed the mean pooling and attention-based architectures in some artificial and real-
world datasets.79,80 It was also demonstrated that Graph Convolutional Neural Networks (GCNNs) can also be used as
permutation-invariant operators that improve instance representations by exploring relationships between them.81

Klambauer et al.82 demonstrated that Hopfield networks can solve the multi-instance problem of immune repertoire
classification, in which bags are extremely large and may consist of hundreds of thousands of instances—immune
receptors, represented by amino acid sequences. They demonstrated that the update rule of Hopfield networks is essen-
tially a key-value attention mechanism—a basis of Transformer architectures80 and suggested a new transformer-like
attention-based pooling that allows for processing extremely large bags and extracting key instances. To avoid over-
fitting, they proposed also a special instance-level dropout regularization technique.

There are also other interesting examples of multi-instance neural networks. Tu et al.83 proposed a multi-instance
learning approach based on graph neural networks. In this approach, each bag of instances is converted to an undi-
rected graph which is processed by Graph Neural Network (GNN) to learn the aggregated bag representation. In Ref.

FIGURE 6 Attention-net multi-instance learning algorithm. An object can be a molecule, protein, DNA, or RNA while instances can be

conformations, atoms, isoforms, subsequences, and so on. Every object is represented by a set (bag) of instances where each instance is

encoded by its feature vector. An attention net was incorporated into the model architecture to predict the weights of individual instances

and aggregate instance embeddings by a weighted sum.
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84 each bag is converted into an unordered sequence of instances, which is processed by the recurrent neural network,
that can memorize the instances.

3.5 | Key instance detection algorithms

The main goal of MIL algorithms is to predict labels for bags. However, it is also desirable to identify key instances that
primarily contribute to the label of the bag (Figure 7). The solutions to the key instance detection (KID) problem36 can
efficiently be used to interpret MIL models. Following,85 interpretation approaches of MIL models can be divided into
model-specific and model-agnostic.

Model-specific KID approaches include MIL algorithms that infer instance labels or estimate the importance of
instances (instance weights). Instance-based algorithms rely on some process, which determines the labels of instances
in a bag. Provided by such algorithms56,57,66,86–89 instance labels are aggregated to derive bag labels. In these algorithms,
the key instances can be naturally identified by considering assigned instance labels.

Bag-based algorithms36,90,91 can be coupled with a specially designed mechanism for the identification of key
instances. For example, multi-instance neural networks can include a pooling operator, which aggregates instance rep-
resentations and can also serve as a detector of key instances. Ilse et al.74 proposed a pooling operator based on the
attention mechanism,92 which was implemented as a two-layered neural network followed by the softmax function that
receives instance scores and generates instance weights that sum to 1. Li et al.93 proposed a deep multiple instance
selection framework (DMIS) based on hard attention94 with Gumbel softmax or Gumbel top-k functions. In contrast to
soft attention where continuous attention weights are assigned to the instances (including negative ones), the proposed
approach selects several key instances filtering out potential negative (non-key) instances. It was shown that focusing
on a small number of key instances may improve overall prediction accuracy. For example, the DMIS approach reached
a classification accuracy of 0.907 on the MUSK2 dataset while state-of-the-art approaches had 0.836–0.903.93 Shin
et al.95 applied a neural network inversion mechanism96 in the MIL classification problem and demonstrated that it can
significantly improve the KID performance. In the image classification tasks (MNIST, colon cancer, and breast cancer)
the approach achieved F1 scores of 0.65, 0.75, and 0.23, while conventional attention reached 0.29, 0.33 and 0.15,
respectively.

There are also other types of pooling operators that can be used for KID. For example, for this purpose, Gaussian
pooling97 applies the Gaussian radial basis function. Dynamic pooling75 iteratively updates the contribution of each
instance during each feed-forward step in neural network training and highlights the key instances. Tu et al.83

implemented an approach, where each instance in a bag is a node in a graph processed by a graph neural network
(GNN) converted to a fixed-dimensional representation by differentiable graph clustering pooling. This approach can
capture relationships between instances in a bag, which in some cases can improve KID performance.83

However, the robustness of KID mechanisms in model-specific approaches is still an open question, because valida-
tion of KID solutions requires labeled data at the instance level but the amount of such data is still scarce. Haab98

addressed this issue and concluded that models with high prediction accuracy of a target property can poorly identify a
key instance, but also demonstrated that the robustness of KID models can be increased by employing an ensemble of
models rather than a single model.

The model-agnostic KID approach for the interpretation of MIL models in classification tasks was proposed in.85

This approach considers methods ignoring relationships between instances and those that recognize such relationships.
The former implies simple strategies such as single instance prediction or one instance removed prediction or their

FIGURE 7 Multi-instance learning with key instance detection. A MIL model may predict not only a label for an input object

(a molecule, protein, or DNA) but may also predict the most relevant instance (a conformation, an atom, an isoform, a subsequence, etc.).
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combination. The latter is represented by the Multiple Instance Learning Local Interpretations (MILLI) technique,
which is similar to the popular single-instance LIME99 and KernelSHAP100 methods for model interpretation. Interest-
ingly, it was shown85 that the model-agnostic approaches perform significantly better in the identification of key
instances than model-specific KID mechanisms of popular MIL algorithms. On the MNIST dataset, MILLI approaches
reached a normalized discounted cumulative gain (a measure of how well-supporting instances are ranked on top) of
0.942 while other approaches resulted in 0.630–0.833.

4 | RELATED CONCEPTS

Many other approaches were proposed to solve multi-instance problems with more straightforward strategies and with-
out involving multi-instance algorithms. For example, many attempts to solve these problems in chemistry were related
to the modeling of biological activity based on ensembles of conformations. Various approaches such as 4D-
QSAR,101,102 Quasar,103 dynamic QSAR,104 ensemble QSAR,105 multi-conformational structure-based QSAR,106 and
many others101 were proposed for this purpose.

The 4D-QSAR suggested by Hopfinger et al.102 was the first attempt to account for the flexibility of molecules repre-
sented by ensembles of conformations obtained from molecular dynamics simulations. Individual conformations of a
molecule were aligned within a grid and occupancy of every cell in a grid by polar, non-polar, hydrogen-bond donor or
acceptor atoms is calculated and averaged over all conformations to encode a molecule. This representation was further
used to build a PLS model to predict a biological response of compounds.

Bak and Polanski107 suggested a modification of Hopfinger's approach. Occupancies calculated for individual con-
formations are mapped on a self-organizing Kohonen map of a fixed size. Every molecule is encoded by a sum of occu-
pancies or mean charge values in each neuron and the PLS method enhanced by iterative variable elimination is
applied to establish a correlation with a property.

Within the Quasar approach, Vedani and Dobler tried to solve the issue of alignment and suggested creating a quasi-
receptor around training set molecules represented by multiple conformations. A quasi-receptor is generated by placing
different features (hydrophobic, H-bond donor/acceptor, etc.) around training set conformations and the positions of
these features were iteratively optimized. Afterwards, the binding energy of individual conformations to a quasi-receptor
was calculated followed by a calculation of the binding energy of a molecule as a Boltzmann average. Further, these
values were used to establish a linear model with observed binding energies of corresponding compounds.

Mekenyan104 proposed a dynamic QSAR framework where a rule-based system is used to screen conformation
ensembles for selecting an effective set of conformations according to the desired property. Predicted property values
for individual conformations were averaged or a Boltzmann average can be computed to get a predicted value for a mol-
ecule. The authors also demonstrated that averaging of descriptors did not allow to improve model performance.

The 4D-SiRMS approach was proposed by Kuz'min et al. as alignment-independent 4D-QSAR method.108,109 Indi-
vidual conformations were encoded by 3D simplexes which are the number of identical tetraatomic fragments with
fixed composition, topology, and chirality. Descriptors were averaged across individual conformations of compounds
using the Boltzmann distribution and models were built using the PLS method.

All described approaches follow essentially the same strategy as the earliest MIL solutions: converting a multi-
instance learning problem into a single-instance one. The majority of approaches can be attributed to bag-wrappers where
descriptors were aggregated to represent a compound. Technically this was implemented in different ways, for instance,
averaging or concatenation of conformation descriptors.104 A more physically sound method is a Boltzmann averaging of
conformation ensembles,108,109 but its efficiency is limited by the accuracy of the estimation of conformation energies. To
account for ambiguity in the 2D structure representation of molecules, Bonachera et al.110 averaged descriptor vectors of
microspecies (protonation or tautomer forms) taking into account their predicted abundance. This approach is similar to
the bag-wrapper algorithm which tackles polymorphism ambiguity caused by protonation equilibria.

Another example of related approaches is graph convolution neural networks (GCNNs) considering a molecule as a
molecular graph. Individual atoms are featurized and then atomic embeddings are enriched considering the embed-
dings of the neighboring atoms by application of permutationally invariant operators. For instance, the simplest Kippf
graph convolution111 updates atomic embeddings using the repeated summation of embeddings of the given atom with
neighboring atoms embeddings. Afterwards, vector representations of individual atoms are pooled into a single feature
vector by choosing a maximum value for each variable (max pooling). This vector represents a whole molecule and is
used to train a model and make a prediction. This is not widely recognized but, in fact, GCNNs perfectly fit the MIL
framework where a molecule is a bag and instances are atoms. GCNN models create embeddings of atoms (instances)
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which afterward are aggregated into a single embedding used to predict a property of a molecule. This corresponds to
the bag-level MIL approach which does effectively the same. We refer readers to some comprehensive reviews of the
graph convolutions published recently in Refs. 112–114.

5 | MULTI-INSTANCE LEARNING APPLICATIONS

5.1 | Polymorphism ambiguity modeling

5.1.1 | Bioactivity modeling with conformation ensembles

One of the first ideas of modeling biological activity with multiple conformations and a MIL-like algorithm was
implemented in Compass,5 an algorithm that automatically selects bioactive conformations and their alignments. Com-
pass is based on a neural network that increases the accuracy of biological activity prediction by the iterative selection of
more probable (bioactive-like) conformation. A compass was applied to predict the human perception of the musk odor
of 102 molecules from the MUSK2 dataset. The single conformation model demonstrated a performance of 71% while the
model considering multiple conformations achieved 91% prediction accuracy in the cross-validation experiment.

Then, Dietterich et al.2 formalized the problem of multi-instance learning and proposed an axis-parallel hyper-
rectangles (APR) classification algorithm. All conformations of all molecules are aligned, 162 evenly distributed rays are
emanated from the origin and the distance from the origin to the surface along each ray is a descriptor value. Thus
162 shape descriptors are calculated for every conformation. Then the algorithm searches for lower and upper boundaries
along each ray which define the virtual wall of a receptor. Optimal hyper-rectangles should match at least one conforma-
tion of positive molecules and avoid all conformations of negative ones. The APR algorithm was tested on MUSK1 and
MUSK2 datasets and compared with conventional neural network and C4.5 decision tree methods. The latter treated all
instances of positive examples as positively labeled during training and predicted a molecule as positive if at least one
instance was predicted positively. The APR approach was superior in both cases. It achieved a classification accuracy of
92.4% and 89.2% on MUSK1 and MUSK2, respectively, while neural networks (NN) and decision trees (DT) which
ignored the multi-instance nature of the problem achieved 75.0% and 67.7% (NN) and 68.5% and 58.8% (DT).

Other examples of applications of MIL for bioactivity modeling are scarce. In Ref. 14 a molecule was represented by
a set of conformations encoded by binary pharmacophore features used as an input to multi-instance regression. The
bioactivity of a given molecule was assessed by weighted averaging of the predicted activities of its conformations.
The experiments on three datasets (23 dopamine agonists, 31 thermolysin inhibitors, and 41 thrombin inhibitors) dem-
onstrated that the multiple conformation models always outperform single conformation models (dopamine agonists:
RMSE = 0.87 vs. 1.25, thermolysin inhibitors: RMSE = 1.27 vs. 1.37, and thrombin inhibitors: RMSE = 1.28 vs. 1.36).

The popular MILES (multiple-instance learning via embedded instance selection) algorithm was successfully
applied to the classification of bioactive compounds against GSK-3 (266 active and 258 negative molecules), P-gp
(122 active and 128 inactive molecules), and cannabinoid receptors (data set I had 253 active and 284 inactive mole-
cules; data set II had 307 active and 188 inactive molecules).15 Each molecule was represented by a set of conformations
encoded by pharmacophore fingerprints. For comparison purposes, the authors used conventional modeling
approaches: 1-norm SVM, decision tree, and Random Forest. To represent molecules in these cases they aggregated bit
vectors of individual conformations for a molecule using logical OR. Thus, reference models can also be recognized as
MIL models but with bag-level aggregation rather than instance-level aggregation of the MILES approach. For all four
datasets, MILES showed high performance with a classification accuracy of 0.898–0.978 whereas the reference
approaches resulted in 0.698–0.919 accuracy. Also, it was demonstrated that MILES can be used to recognize bioactive
conformations. The MILES model was able to recognize experimental bioactive conformations for 10 out of 12 test mol-
ecules from the GSK-3 data set, which was intentionally included in the bag of the generated conformations.

In our recent study, we proposed a MIL-kmeans algorithm to build 3D multi-conformational models.16 A molecule
(bag) was represented by an ensemble of its conformations (instances), each encoded by 3D pharmacophore descriptors.
The latter were used to cluster all instances in the training set. Then, for each molecule, a new binary descriptor vector
was generated. Its length was equal to the number of clusters. A bit was assigned 1 if, at least, one conformation of a
compound fell into the corresponding cluster or 0 otherwise. In such a way, this approach transforms multi-instance
data into single-instance representation. Then Random Forest algorithm was applied to build classification models
based on these bit vectors. This approach demonstrated some competitive performance on datasets composed from
exclusively chiral molecules: balanced accuracy for 2D/MIL models for serotonin 1a receptor—0.79/0.77, dopamine D2
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receptor—0.83/0.81, alpha-1b adrenergic receptor—0.69/0.74, mu opioid receptor—0.83/0.81, JAK2 kinase—0.85/0.86,
11-beta-hydroxysteroid dehydrogenase 1—0.83/0.82. However, it was outperformed by conventional 2D models in a
larger scale testing on 163 datasets extracted from ChEMBL which contained preferably achiral molecules: 2D models
were better in 124 cases, whereas in other cases both models demonstrated accuracy close to random.

Afterward, we extended our studies17,18 and performed a large-scale benchmark of single-instance and multi-
instance regression models for the prediction of the biological activity of molecules on an updated 175 datasets from the
ChEMBL database. 3D multi-conformation models outperformed 3D single-conformation models in 98% of cases (aver-
age R 2 = 0.524 vs. 0.024) and conventional 2D models in 70% of cases17 (average R 2 = 0.524 vs. 0.464). Also, we
observed that the performance of 3D multi-conformation models depends on the type of multi-instance algorithm. In
particular, we found that Instance-wrapper outperformed more sophisticated multi-instance attention-based neural net-
works in 84% of datasets (average R 2 = 0.524 vs. 0.468). On the other hand, the above study demonstrated that
attention-based neural networks can successfully identify bioactive-like conformations (i.e., solve key instance detection
problems) even better than the popular AutoDock Vina docking program.115 This study justified applicability of MIL
approaches to solve chemical problems and their competitiveness to other methods. We tried to establish factors which
make datasets more suitable for conventional 2D modeling or multi-conformation modeling using MIL approaches and
found that 3D multi-conformation MIL models perform better on datasets composed from more rigid molecules. This
may be explained by conformation sampling issues and the insufficient number of representative conformations.

5.1.2 | Catalysts enantioselectivity modeling with conformation ensembles

Modeling of enantioselectivity of chiral organic catalysts has recently attracted a lot of attention and at least two 3D multi-
ple conformation approaches19,116,117 have been proposed to generate Quantitative Structure–Selectivity Relationships
models. For example, Denmark's group reported a 3D grid-based approach,116,117 in which each catalyst conformation
was represented by Average Steric Occupancy descriptors (averaged steric occupancy vectors of conformations similar to
the Bag-wrapper approach). They demonstrated that multiple conformation models outperform single conformation ones
(MAE of 0.21 vs. 0.26 kcal/mol) in the prediction of enantioselectivity for the test set of phosphoric acid catalysts.

We reported the first application of MIL to 3D modeling of enantioselectivity19 for the phosphoric acid catalysts
from Zahrt et al.116 Each catalyst was represented by an ensemble of conformations and 3D models were built using
Instance-wrapper, Bag-wrapper, Instance-net, Bag-net, and Attention-net algorithms (Section 3). Similar to our previous
study on the modeling of biological activities,17 the Instance-wrapper algorithm outperformed other multi-instance algo-
rithms and single conformation models in predicting enantioselectivity. The MIL approach resulted in a mean absolute
error of 0.25–0.26 kcal/mol for predicted ΔΔG while 2D single-instance gave 0.39–0.40 kcal/mol on external test sets.19

In the recent study13 we performed more rigorous validation of MIL approaches on four datasets: (i) asymmetric
addition of thiols to imines catalyzed by chiral phosphoric acid catalysts (PAC data set), (10) (ii, iii) asymmetric alkyl-
ation of glycine-derived Schiff bases catalyzed by ammonium salts (APTC-1 and APTC-2 datasets),118,119 and
(iv) asymmetric protonation of carboxylic acids catalyzed by chiral disulfonimides (DSI dataset).120 It was demonstrated
that 3D multi-conformer models outperform any 3D single-instance model regardless of the 3D descriptors used.
Instance-wrapper showed the best performance in PAC (MAE = 0.33 kcal/mol), APTC-1 (MAE = 0.11 kcal/mol), and
DSI datasets (MAE = 0.17 kcal/mol) while Bag-wrapper was better in APTC-2 (MAE = 0.13 kcal/mol). These results
were comparable to or better than the performance of best 2D models obtained in the same study: PAC 0.28 kcal/mol,
APTC-1 0.16 kcal/mol, APTC-2 0.22 kcal/mol, DSI 0.23 kcal/mol (all values are MAE). We also showed that MIL
models better predict enantioselectivity beyond the training set on the example of the PAC dataset where reactions with
enantiomeric excess (ee) below 80% were used as the training set and reactions with ee ≥ 80% composed the test set.
The 3D multi-conformer model built using the quantile loss function achieved R 2

test 0.36 and a Ranking accuracy of
0.79, while the 3D single conformer model had 0.01 and 0.67 and the best 2D model had �0.07 and 0.69, respectively.

5.2 | Part-to-whole ambiguity modeling

5.2.1 | Property modeling with atoms as instances

A molecule can be thought of as a collection of interconnected atoms. However, it is frequently unclear which specific
atoms are responsible for the observed particular molecule's property. This problem can be treated within the part-to-
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whole ambiguity framework where each atom of a molecule is represented by a separate vector of atom descriptors
(Figure 8).

Often, the problem of identification of fragments responsible for a particular property is solved using approaches for
model interpretation,121 for example, similarity maps122 or masking of atoms/fragments.123 MIL can be applied in a case
when the assignment of an atom responsible for a given activity, like acidity or basicity, is complicated. If such a key
atom is known, the models can be built using local atomic descriptors.41,124–126

Bergeron et al.20,21 introduced the multi-instance ranking (MIRank) approach to identify metabolic sites of mole-
cules (i.e., atomic groups from which a hydrogen atom is removed during the enzymatic transformation). The authors
suggested grouping topologically equivalent hydrogens into individual bags and labeling bags as positive, if any of the
hydrogens within the bag are metabolized, and negative otherwise. Each hydrogen atom was represented by a set of
quantum chemical descriptors such as the charge, the surface area, hydrophobic moment, and so on, calculated from
3D structures of molecules. This resulted in different descriptor representations of hydrogens within the same bag and
allowed the formulation of the task as a multi-instance problem. Using a dataset of 227 drugs, drug candidates,
and other biologically active compounds that were metabolized by cytochrome CYP3A4.127 It was demonstrated that
the MIRank model performed slightly better than the linear multi-instance classification model20 (classification accu-
racy 70.9% vs. 67.1%). Later, Bergeron et al.21 upgraded their algorithm and validated it on an extended database of
10 CYP datasets comprising 28–397 compounds collected from the literature. The models achieved ranking accuracy of
57.3%–75.2% for individual cytochromes and the model which was trained on the single combined dataset (923 com-
pounds) achieved even higher accuracy 77.4%, while the random baseline expectations were 16.5%–35.6% for individual
cytochromes and 19.6% for the combined dataset.

Recently, Xiong et al.12 developed a multi-instance graph neural network to predict both the macro-pKa of the mol-
ecule and the micro-pKa of individual atoms. In their approach, a molecule was a bag, which contained instances of
the ionizable atoms of this molecule. Each atom was described by a vector of features extracted with a graph neural net-
work. The extracted instance features were used to predict the micro-pKa of atoms, which were then aggregated to
derive a macro-pKa. The model (Graph-pKa) was tested on the dataset of 16,595 compounds associated with 17,489
pKa values. The Graph-pKa model was compared with baseline models (SVM, RF, XGBoost, and ANN machine learn-
ing models) where each compound was encoded by a set of molecular fingerprints. As a result, Graph-pKa achieved a
MAE of pKa prediction of 0.55 on the test set, while baseline models showed prediction accuracy within
MAE = 0.63–0.72.

In Table 1 we summarized all currently published chemoinformatics studies where MIL approaches were applied.

5.3 | Segment-to-sequence ambiguity modeling

5.3.1 | Protein–protein interactions

Protein–protein interactions (PPI) play an important role in biological processes. In general, only particular segments of
proteins (domains) are involved in the interaction between the proteins and, therefore, determine their functional
response. For this reason, knowledge of such domains enables the prediction of new PPI.

FIGURE 8 A general approach to multi-instance modeling of properties of molecules represented by atom instances. Vectors of atoms

can include physico-chemical or quantum-chemical descriptors or can be extracted using graph neural networks.12
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Experimental PPI data provide some information on the interacting protein pair and the type of interaction (activa-
tion, ingestion, phosphorylation, dissociation, etc.), but the important details concerning interacting domains (key
domains) are often unavailable. This scenario fits the MIL framework, where each potential domain pair is an instance
(Figure 9) and the whole collection of domain pairs in a given protein–protein complex constitutes a bag. At least, one
of these domain pairs defines a type of interaction (e.g., phosphorylation) (Figure 9). If the proteins do not interact,
there is no pair of interacting domains in the bag.

For a dataset of 1279 PPI records labeled with 10 different interaction types, Yamakawa et al.128 considered the sim-
plified classification task—whether a given PPI is phosphorylation or not. To solve this problem, they proposed a Vot-
ing Diverse Density (VDD) algorithm based on the Diverse Density (DD) method. The main idea of the DD approach is
to find a prototype point in the feature space that is close to at least one instance from every positive bag and far away
from any instances in negative bags (Figure 4). Prototype points are found according to a diverse density score, which is
a measure of how many different positive bags have instances near the prototype point. The authors observed that the
DD algorithm is sensitive to the contribution of negative instances to the diverse density score. To solve this problem,

TABLE 1 Applications of multi-instance learning approaches in chemoinformatics.

Paper Year Task Datasets Representation Algorithms

Jain et al.5 1994 Bioactivity of
molecules (musk
strength)

MUSK1 (102 molecules) Multiple
conformations of the
molecule

Instance-level neural
network

Dietterich et al.2 1997 Bioactivity of
molecules (musk
strength)

MUSK1 (92 molecules) and MUSK2
(102 molecules)

Multiple
conformations of the
molecule

Axis-parallel rectangles
(APR): standard APR,
outside-in APR, inside-
out APR

Davis et al.14 2007 Binding affinity of
molecules

Dopamine agonists, thermolysin
inhibitors, and thrombin
inhibitors

Multiple
conformations of the
molecule

Multi-instance regression

Bergeron et al.42 2008 Identification of
metabolic sites of
molecules

227 compounds metabolized by
cytochrome CYP3A4

Equivalent hydrogens
as a bag

MIRank

Bergeron
et al.127

2012 Identification of
metabolic sites of
molecules

10 CYP datasets Equivalent hydrogens
as a bag

Upgraded MIRank

Fu et al.15 2012 Inhibitory activities
of molecules

Inhibitors against GSK-3, P-gp, and
CBrs receptors

Multiple
conformations of the
molecule

MILES

Nikonenko
et al.16

2021 Bioactivity of
molecules

162 ChEMBL datasets Multiple
conformations of the
molecule

MIL-kmeans

Zankov et al.17 2021 Bioactivity of
molecules

175 ChEMBL datasets Multiple
conformations of the
molecule

Instance-Wrapper,

Bag-Wrapper,
Instance-Net, Bag-Net,
Bag-AttentionNet

Zankov et al.19 2021 Enantioselectivity
of organic
catalysts

Phosphoric acid catalysts Multiple
conformations of
catalysts

Instance-Wrapper,
Bag-Wrapper, Instance-
Net, Bag-Net, Bag-
AttentionNet

Xiong et al.12 2022 Macro- and micro-
pKa of molecules

16,595 compounds associated with
17,489 pKa values

Instances of the
ionizable atoms as a
bag

Multi-instance graph
neural network

Zankov et al.13 2023 Enantioselectivity
of organic
catalysts

Phosphoric acid catalysts; two
datasets on phase-transfer
catalysts; disulfonimides

Multiple
conformations of
catalysts

Instance-Wrapper, Bag-
Wrapper, Instance-Net,
Bag-Net, Bag-
AttentionNet
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they proposed a weighted voting system, in which many positive instances that are near the prototype point should
receive a higher score, even if there are a few negative instances close to that point. Then they compared the VDD
model with other popular six MIL algorithms (Citation-kNN, mi-SVM, EM-DD, MI-SVM, Diversity Density,
Iterdiscrim-APR) from the MILL toolkit (A Multiple Instance Learning Library).129 VDD model demonstrated classifi-
cation accuracy of 0.852, while competitive MIL algorithms performed within 0.565–848 accuracy. Although some alter-
native MIL algorithms are very close in accuracy to VDD (the closest one Citation-kNN with a classification accuracy of
0.848), the VDD model building time was reported to be around 70 s, whereas, for the other algorithms, the time varied
between 900 and 1500 s.128

Multi-domain proteins can realize many different functions. To predict the biological functions of proteins, Wu
et al.27 used a Multi-Instance Multi-Label (MIML) framework, where protein domains (instances) and the protein (bag)
were associated with multiple biological functions (multiple labels). They demonstrated that their ensemble MIML
learning approach (an ensemble multi-instance multi-label learning framework, EnMIMLNN) outperformed most of
the other state-of-the-art MIML algorithms (MIMLNN,130 MIMLSVM+,131 En-MIMLSVM,132 MIMLBoost,132

MIMLkNN,133 DBA134) on seven real-world genome data sets from the main biological systems: two bacteria genomes
(Geobacter sulfurreducens, Azotobacter vinelandii), two archaea genomes (Haloarcula marismortui, Pyrococcus furiosus)
and three eukaryote genomes (Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster) (average
Hamming Loss: 0.009 for EnMIMLNN and 0.009–0.064 for others).

5.3.2 | Gene–gene interactions

A gene in a DNA sequence induces the biosynthesis of a given protein with an inherent structure and biological func-
tion. Proteins produced by different genes can be functionally related and their combination may determine a particular
phenotype. This is a so-called gene–gene interaction. However, an alternative splicing mechanism makes possible the
synthesis of several isoforms of a given protein from the same gene. These isoforms have a similar amino acid sequence
and structure but may exhibit different biological functions. This substantially complicates gene–gene interaction
modeling and may lead to the erroneous classification of interaction between genes as negative if the corresponding
proteins were considered in their canonical isoforms (widely expressed or the longest sequence) while alternative
isoforms are responsible for the effect.

This case can be handled within the MIL framework, in which a gene (bag) generates several protein isoforms
(instances). The interaction between a gene–gene pair is positive if at least one of the isoform-isoform interactions (IIIs)
is positive. To address these problems Li et al.135 proposed a single-instance bag MIL (SIB-MIL) algorithm based on the
Bayesian network classifier. SIB-MIL works at the instance level and assigns to each instance (isoform pair) a probabil-
ity to be positive (interactive). In SIB-MIL, the Bayesian network classifier is initially trained on positive bags with
single-instance (gene pairs with a single pair of isoforms) and negative instances from negative bags. The obtained

FIGURE 9 Probable domain-domain pairs of interacting proteins. A pair of proteins (an object) is represented by a set of corresponding

domain pairs (instances).
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classifier is then used to assign probability scores to the remaining isoform pairs in multi-instance bags. Using the
obtained probability scores, a witness (key instance) is selected from each positive bag and labeled as positive. The
instances with the highest probability score from the negative bags are labeled as negative. Updated labels are used to
retrain the Bayesian network classifier. The instance labels are updated until the accuracy of the validation set stops
improving. At the gene-pair level, the label of a bag is defined as the maximum probability score of its instances.

Then, Zeng et al. proposed a DMIL-III method30 based on a deep neural network with convolutional layers.
DMIL-III consists of several convolution layers and the last layer with a sigmoid activation function, which quan-
tifies the probability that an isoform pair is interacting or not. These isoform pair probabilities are then processed
by the maximum pooling operator to obtain the final predicted label for the given bag (gene–gene pair). DMIL-III
neural network was tested in the PPI dataset of 26,344 positive gene bags (at least one isoform pair is interacting)
and 20,910 negative gene bags (none of the isoform pair is interacting), corresponding to 177,456 positive and
130,138 negative isoform pairs, respectively. DMIL-III (classification accuracy of 0.94) was shown to significantly
outperform the described SIB-MIL (classification accuracy of 0.54) and mi-SVM multi-instance algorithms (classifica-
tion accuracy of 0.64).

Typically, PPIs and IIIs databases contain information about identified interactions, whereas classification algo-
rithms require also negative examples, which are usually generated artificially. This strategy often results in a signifi-
cant excess of negative examples over positive ones, leading to imbalanced datasets. For this reason, Zeng et al.22

implemented a novel loss function to handle the imbalanced data and proposed the IDMIL-III method. They also
enhanced the IDMIL-III with an attention mechanism, to identify the interacting isoform pairs from a positive gene
bag. For algorithm comparison, they used the multi-isoform gene pairs dataset derived from the Human Protein Refer-
ence Database (HPRD).136 IDMIL-III achieves an F1 value of 95.4% at the gene-level prediction, which is 42.2% higher
than that of SIB-MIL, and 3.8% higher than that of DMIL-III.

5.3.3 | MHC-II-peptide interactions

Major histocompatibility complex (MHC) proteins are a large set of cell surface proteins that are essential for the adap-
tive immune system. MHC proteins of class I and II bind a short peptide fragment (epitope) obtained from cytosolic or
extracellular proteins, correspondingly, and present it at the cell membrane to cytotoxic T cells. This will trigger a
response from the immune system against a particular non-self-protein. In the context of vaccine design, it is very
important to know which peptides bind to MHC to initiate the desired immune response. MHC proteins have a binding
groove where peptide fragments bind. MHC-I has a closed groove and usually binds peptides of lengths between 9 and
11 amino acids. In contrast, the binding groove of an MHC-II protein is open at both ends and can bind peptides com-
monly with lengths from 11 to 30 amino acids.137 On the other hand, it was established that 9-mer segment of the pep-
tide is responsible for the MHC-II binding but the sequence itself is hard to identify experimentally.

Multi-instance learning was adapted to predict peptide binding activity to MHC-II in classification138 and regression
tasks.139 Both approaches generated bags of segments of nine amino acids using the sliding window approach
(Figure 10). In study,138 an SVM classifier with a normalized set kernel was used as the multi-instance method.138 This
method was tested on the MHCII benchmark dataset collected by Wang140 and describing 10,017 experimentally mea-
sured peptide MHCII binding affinities for 14 human and 2 mouse MHC class II types and was demonstrated to per-
form on the level of the conventional state-of-the-art approaches. In study,139 the prediction of MHC-II binding activity
was considered as a regression problem. For this purpose, the popular multi-instance MILES algorithm66 was adopted
for the regression task by replacing the 1-norm SVM classifier with a support vector regression (SVR). To be compared
with other methods, the proposed MHCMIR method was also tested in classification mode, when predicted binding
affinities were converted to binary labels by specified thresholds. As a result, MHCMIR outperformed other competing
methods on 4 out of 16 Wang's MHCII benchmark dataset subsets.140 Also, it was demonstrated, that MHCMIR can
identify key instances (peptides binding cores).

A new MIL approach for predicting MHC-II binding was proposed in which flanking amino acids (11-mers) were
considered in addition to the 9-mer segments.26 Also, the authors used experimental information that amino acids at
positions 1, 4, 6, 7, and 9 may be crucial for peptide binding and integrated this information into the learning algorithm.
In addition, their study revealed that amino acids at position 2 may also influence peptide binding.

Often, experimental methods cannot identify which member of the MHC-II protein family is bound to a given pep-
tide. Cheng et al.23 formulated the MIL problem, where the bag contains multiple MHC-II proteins. The bag is positive
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if at least one MHC-II protein binds a given peptide and negative if there are no binding MHC-II proteins in the bag.
They used a combined dataset of single-allele and multi-allele data141 to train a Transformer-based neural network
BERTMHC.23 Their model achieved an AUROC value of 0.72 on the independent test set in the task of classification of
peptides as binders and non-binders while state-of-the-art methods performed worse: NetMHCIIpan3.2
(AUROC = 0.68), PUFFIN (AUROC = 0.69), and MHCnuggets (AUROC = 0.58).

5.3.4 | Calmodulin–protein interactions

Calmodulin (CaM) is a calcium-binding protein of 148 amino acids that can interact with more than 300 proteins and
peptides,142 thereby regulating many biological processes. The biological significance of CaM and the high diversity of
proteins interacting with CaM motivated the development of computational methods for predicting both the proteins
able to bind to CaM (interaction prediction problem) and the binding sites of these proteins (binding site prediction
problem).

Minhas et al.33 proposed the MI-1 SVM algorithm for CaM binding site prediction and tested it on the dataset of
153 proteins with 185 experimentally annotated binding sites. In a single-instance scenario, the subsequences annotated
as binding sites were labeled as positive examples, and all other parts of the protein (obtained using a sliding window
approach) as negative. However, experimental methods do not always accurately determine the position of the binding
site, which introduces ambiguity into the learning process of the classification model. Therefore, within the multi-
instance framework, all subsequences overlapping the binding site formed a positive bag, and all other subsequences
formed a negative bag.

They tested one single-instance algorithm (vanilla SVM) two multi-instance algorithms mi-SVM and a new MI-1
SVM designed by them. In mi-SVM, first, all instances of positive bags are assigned positive labels, and all instances of
negative bags are labeled as negative. Then, a standard SVM is trained on the obtained single-instance data and used to
update the labels for the instances. If no instance in a positive bag is assigned a positive label, the algorithm chooses the
instance in the bag having the largest score (discriminant function value in SVM) and sets its label as positive. This
algorithm is based on the condition that in positive beg there must be at least one positive instance. They formulated
the relaxed condition, in which at least one instance in the true binding site needs to score higher than the negative
instances from the same protein (bag). Finally instance labels are updated until is repeated until the instance labels stop
changing. As a result, the authors concluded that MI-1 SVM outperformed mi-SVM (AUC = 96.9 vs. 96.2) and single-
instance SVM (AUC = 96.9 vs. 95.9) in the classification of binding sites. However, the authors also concluded33 that
the accuracy of MI-1 SVM for CaM interaction prediction is still low since the presence of a CaM-binding pattern in a

FIGURE 10 Sliding window approach for the generation of a bag of subsequences (instances) from biological molecules (e.g., proteins),

which are modeling objects.
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protein does not guarantee efficient binding of the pro-protein to CaM. Therefore, they considered the prediction of
CaM binding proteins and their binding sites as separate tasks and proposed the CaMELS approach, which achieved
state-of-the-art accuracy in both tasks.139

5.3.5 | Modeling genomic sequences

Transcription of genes is the process of copying a DNA sequence into an RNA molecule. A Transcription Factor (TF) is
a special protein that binds to a DNA sequence and activates or suppresses the expression of certain genes. Regions of
DNA sequences that are bound by a transcription factor are called Transcription Factor Binding Sites (TFBS). Modern
experimental techniques29 enable the identification of DNA segments that are bound by the TF protein, but the precise
identification of TFBS is still a challenge. A DNA sequence may contain one or more binding sites and, usually, the
exact location of the TFBS is not known, although preference information is sometimes available. Therefore, it is natu-
ral to represent the DNA sequence as a bag of possible binding sites. A bag is generated by a sliding window approach
(Figure 10) of length n through the whole DNA sequence. In the MIL classification setting, a bag (DNA sequence) is
positive if it contains at least one TFBS and negative if it contains no TFBS. The typical length of a TFBS is 6–12 bp,
which is reflected in the length of the subsequences (instances) included in the bag.

The in vitro protein binding microarray (PBM) experiments allow high-throughput screening of DNA sequences
that bind to a given TF. The typical length of DNA sequences in such experiments is 35 bp, whereas TFBS lengths nor-
mally vary from 6 to 12 bp. PBM data provide an excellent source for the modeling of TF-DNA interactions and
predicting in vivo binding. To model in vitro binding, Gao and Ruan24 used a dataset of measured binding affinities of
DNA sequences against 20 mouse TFs. This dataset was obtained from the Dialogue on Reverse-Engineering Assess-
ment and Methods (DREAM) competition.143 They compared SIL (whole DNA sequence) and MIL (bag of DNA subse-
quences) models. For building MIL models, they used the essentially Instance-wrapper algorithm implemented in the
WEKA package with the C4.5 decision tree as the wrapped machine learning algorithm. Individual PBM probe
sequences were represented as a bag of all possible binding sites (instances) of the length 5–8 bp. The MIL models out-
performed the corresponding SIL models for each of the 20 mouse TFs (average AUC score 0.94 vs. 0.71). Later Gao
and Ruan32 proposed a MIL version of the TeamD algorithm (one of the best single-instance algorithms in the
DREAM5 competition), which models each subsequence (instance) of DNA separately. Using a PBM dataset of
86 mouse TFs from their previous work,24 they demonstrated that for 78 of the 86 TFs, MIL-TeamD outperformed SIL-
TeamD (average AUC score 0.94 vs. 0.90).

To predict TF-DNA binding, Zhang144 considered the DeepBind34 algorithm based on a deep convolutional
neural network (CNN) earlier used to predict DNA– and RNA–protein binding and proposed its MIL version called
Weakly-Supervised CNN (WSCNN). A single-instance learning algorithm (SIL-CNN) had the same architecture as
DeepBind. WSCNN first divides each DNA sequence into multiple subsequences (instances) with a sliding window,
then separately models each instance using CNN, and finally fuses the predicted scores of all instances in the same
bag using different fusion operators (Max, Average, Linear Regression, and Top-Bottom Instances). They took the
same PBM dataset of 86 mouse TFs32 and found that the WSCNN (MIL-CNN) model with an average Pearson
correlation coefficient (RP) of 0.534 performed better than SIL-CNN (average RP = 0.491) and the MIL-TeamD
(average RP = 0.414) model.

RNA modification is the process of chemical modification of the nucleotides in synthesized RNA. Traditional super-
vised learning approaches for predicting RNA modification sites require base-resolution data, which are often not avail-
able. Huang et al.145 proposed the MIL framework based on a deep convolutional network, called weakly supervised
learning framework (WeakRM), to predict RNA modification sites based on low-resolution datasets. Each RNA was
considered as a bag consisting of regions (instances) obtained by a sliding window approach (Figure 10). Each instance
is converted to a feature matrix by the one-hot encoding method of each nucleotide in the subsequence. The
instance features are processed by convolutional layers and by gated attention (a three-layer neural network) to obtain
a weighted summation of instance embeddings. Then the final prediction is generated based on bag-level representa-
tion. WeakRM outperformed described above WSCNN for three different types of RNA modification and was demon-
strated to be able to identify regions containing the RNA modifications (key instances).145 AUROC values for WeakRM
and WSCNN were 0.896 versus 0.862 for the prediction of methylation of guanine at the N7 position, 0.909 versus 0.889
for the prediction of hydroxylmethylation of cytidine at position 5, and 0.935 versus 0.912 for acetylation of N4 position
of cytidine.
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5.3.6 | miRNA–mRNA interactions

mRNA regulates the synthesis of the peptides during gene expression, while microRNAs (short non-coding RNA with
18–25 nucleotides) bind to the specific sites of the target mRNA, and deactivate a part of the latter or initiate its degra-
dation and thereby inhibit gene expression. mRNA has a large number of potential binding sites (PBS) that can be
bound by given miRNA. Experimental identification of functional binding sites (FBS, 2–8 nucleotide segments) is an
expensive process. In this context, computational approaches for predicting miRNA targets and their binding sites are
highly desirable. In the MIL framework, each miRNA–mRNA pair is considered a bag, and each PBS of target mRNA is
treated as an instance. In the classification task, a bag is positive if it contains at least one FBS (key instance), and nega-
tive if there is no FBS in the bag (given that miRNA–mRNA does not interact).

Bandyopadhyay et al.35 developed the MBSTAR (Multiple instance learning of Binding Sites of miRNA TARgets)
approach, which is based on the MIL Random Forest algorithm (MIL-RF) and can predict both miRNA-mRNA pairs (bag
predictions) and target binding sites (instance predictions). The performance of MBSTAR was compared with other MIL
methods (Diverse Density [DD], Expectation–Maximization DD [EM-DD], Citation kNN, and multiple instance SVM [MI-
SVM]) and conventional state-of-the-art miRNA target prediction tools (TargetScan, miRanda, MirTarget2, and SVMicrO)
on a dataset consisting of 9531 positive miRNA–mRNA interactions and 973 negative interactions. On the target level
(miRNA–mRNA pairs prediction) MBSTAR (classification accuracy of 0.720) outperformed other MIL methods (classifica-
tion accuracy of 0.685–0.486) and conventional tools (see ROC plots in original study35). It was found that MBSTAR
achieved the highest F-Score of 0.337 in binding site prediction compared with conventional methods (0.274–0.049) and tar-
get level classification accuracy of 78.24% (other methods showed 57.77%–16.3%) for the validated positive interactions.

6 | TOOLKITS AND SOFTWARE

Due to the rapid development of MI methods in recent decades, many of their open-source implementations in different
programming languages and tools have been proposed (Table 2). Here, we briefly review the most popular ones.

WEKA146 is a freely available software for data analysis and visualization, as well as machine learning modeling.
WEKA is written completely in Java and has a simple API and user-friendly graphical interface. It supports several pop-
ular MI classifiers, including the aforementioned CitationKNN, Diverse Density algorithm, multi-instance extensions of
SVM, and wrappers.

Knowledge Extraction based on Evolutionary Learning (KEEL),147 is another open-source machine learning soft-
ware written in Java and supported by a graphical interface. KEEL provides a set of tools for building predictive models
using machine learning algorithms, including some MIL algorithms. Thus, it provides different variations of the APR
algorithm and several popular multi-instance methods, such as EM-DD, G3PMI, CitationKNN, and methods based on
evolutionary algorithms.

MATLAB implementations of multi-instance algorithms can be found in the Matlab Toolbox for Multiple Instance
Learning.148 Multiple-Instance Learning Python Toolbox149 is inspired by MATLAB Toolbox and provides popular
multi-instance algorithms written in Python.

Various multi-instance modifications of SVM48 methods are available online in Python. Also, some
implementations of multi-instance deep neural networks can be obtained from GitHub repositories: classical MI-NN
(3D-MIL-QSAR), MI-NN with attention mechanisms (AttentionDeepMIL), graph MI-NN (Graph neural networks), and
Transformer-based multi-instance architectures (Set Transformer) (Table 2).

7 | COMPUTATIONAL COMPLEXITY AND COST

Additional costs for MIL model building may come from two sources. The first one is the generation of instances if they
are not available. This can be very efficient in the case of the generation of subsequences of a protein/DNA sequence by
the sliding window approach or relatively expensive in the case of enumeration of conformations of molecules. Confor-
mation generation may become a bottleneck of a whole modeling pipeline and take even more time than model build-
ing itself. However, more efficient conformation generation approaches may partly solve this issue and greatly reduce
these costs.150
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Another issue is the complexity of different MIL representations and their processing.9,45 Let B be the number of
bags in a training set (e.g., molecules), N the number of instances (e.g., conformations), and D the dimensionality of a
feature vector representing the instances. In the case of a bag-level representation where one has to compute the dis-
tance between bags, the cost is O(B 2 � N 2 � D). This is, for example, the Citation-kNN approach. The computational
costs in this case will increase very quickly with increasing the number of modeling objects and instances.

Models based on embedding individual instances in a bag into a single feature vector are more efficient and are
scaled linearly with the number of bags and instances: O(B � N � D). An example of these models is bag-wrappers.
Regarding instance-based approach, for example, instance-wrappers, the main costs are created by the number of train-
ing set instances which is N times greater than for single-instance models. Therefore, approaches based on bag embed-
dings are the most computationally efficient followed by instance-base approaches and bag-level representation
approaches. To make the latter approaches applicable to datasets with a large number of instances the size of datasets
can be reduced, for example, by selection of most representative instances by clustering, however, this may also reduce
the accuracy of models.

8 | PERSPECTIVES

Applications of MIL approaches are not limited to those described above. MIL can be applied to ensembles of any other
molecular form, for example, tautomers. In some cases, a minor tautomer of a ligand binds to a biological target and
triggers the biological response.151 It was demonstrated39 that accounting for tautomerism may significantly affect the
performance of machine learning models for anxiolytic activity,40 logP, and pKa prediction152 as well as retrieval infor-
mation on structure–activity relationships.153 So far, there are no applications of MIL to model molecular properties

TABLE 2 Multi-instance learning toolkits and software.

Tool
Programming
language Link Description

WEKA Java https://waikato.github.io/weka-
wiki/multi_instance_
classification/

Contains a module of multi-instance classification
algorithms (at least 14 algorithms) as part of the
WEKA tool

KEEL Java https://sci2s.ugr.es/keel/category.
php?cat=mul

Contains some multi-instance learning classification
algorithms (APR, CitationKNN, DD, etc.)

Multiple Instance
Learning Matlab
toolbox

Matlab https://github.com/DMJTax/mil Multi-instance learning classification algorithms

Multiple-Instance
Learning Python
Toolbox

Python https://github.com/jmarrietar/
MILpy

Multi-instance learning classification algorithms

MILL Matlab https://www.cs.cmu.edu/�juny/
MILL/

Contains some multi-instance learning classification
algorithms (APR, DD, Citation-kNN, etc.)

MISVM Python https://github.com/garydoranjr/
misvm

Python implementation of numerous support vector
machine (SVM) algorithms for the multiple-instance
(MI) learning framework

AttentionDeepMIL Python https://github.com/AMLab-
Amsterdam/AttentionDeepMIL

PyTorch implementation of attention-based deep
multiple Instance learning neural network

Set Transformer Python https://github.com/juho-lee/set_
transformer

PyTorch implementation of the paper Set Transformer

Graph neural
networks

Python https://github.com/KostiukIvan/
Multiple-instance-learning-with-
graph-neural-networks

Multi-instance learning with graph neural networks

3D-MIL-QSAR Python https://github.com/cimm-kzn/3D-
MIL-QSAR

QSAR modeling based on conformation ensembles
using a multi-instance learning approach
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using a set of tautomeric forms, but this seems an attractive way to improve the performance of modeling molecular
properties dependent on the underlying tautomeric form.

The application of MIL algorithms to sets of atoms-as-instances is another promising direction, which enables the
identification of key atoms of a molecule that determine its properties. Although many approaches for atom-based
interpretation of QSAR/QSPR models already exist,121 very few examples of related MIL applications have been
reported so far.12,20,21 However, they can rapidly emerge taking into account that popular graph convolution
methods113,114,154 implicitly use the MIL technique. Notice that MIL could be effectively coupled with quantum chemi-
cal descriptors associated with particular atoms.

Many interesting venues for MIL application can be found when the modeled property is associated with different
mechanisms of action. For example, the toxicity of molecules is usually related to the interaction of a molecule with a
set of biological targets only some of which trigger a particular response. Another possible application is the modeling
of properties of molecular mixtures. Unlike existing single-instance approaches,155,156 a mixture can be considered as a
bag of individual components representing instances. Establishing relationships between individual components and
key instance detection by dedicated MIL algorithms would represent an additional benefit.

A unique feature of MIL approaches is the ability to identify key instances—molecular forms or segments associated
with an observed property or a function of a molecule. Several studies have demonstrated successful examples of the
identification of possible bioactive conformations of a molecule.12,15,17 This is a remarkable achievement—the identifi-
cation of a bioactive conformation of a molecule without information about a receptor. However, more rigorous studies
are still necessary to better investigate and unlock the full potential of the identification of key instances. Partly, the val-
idation and development of MIL algorithms for solving the KID problem are constrained by the limited amount of
experimental data on active molecular forms and we anticipate the development of new benchmarks to stimulate the
progress in this direction.

There is still a lack of widely accepted MIL benchmarking datasets relevant in chemistry and biology domain.
Therefore, with the penetration of MIL approaches to chemo- and bioinformatics, we anticipate the publication of new
well-characterized datasets suitable for benchmarking of contemporary neural network models requiring larger
datasets.

9 | CONCLUSIONS

A molecule is a dynamic object representing an ensemble of different forms (conformations, tautomers, etc.) in equi-
librium, and, therefore a machine learning method used to model its physico-chemical properties or biological activ-
ities should be able to handle such molecular complexity. In this context, Multi-Instance Learning considering an
object as an ensemble of instances represents a promising alternative to regular machine learning techniques.
Numerous studies demonstrate that MIL beats conventional single-instance learning. In particular, this concerns the
modeling of the biological activity of molecules and enantioselectivity of chiral catalysts where the MIL-based 3D
multi-conformation models outperform the 3D single-conformation ones accounting for the lowest-energy conforma-
tions only. 3D multi-conformation regression MIL models also outperformed state-of-the-art 2D models in many
cases. However, due to the higher computational costs of the former models we recommend building 2D models
first and then, if they fail, building 3D MIL models. In a limited number of chemoinformatics studies, instance
wrappers were best performing among other MIL approaches for the solution of regression tasks. For classification
tasks, there are not enough systematic studies to conclude whether these models outperform conventional 2D ones.
More benchmarking studies are required to answer the question about the applicability and performance of different
MIL models in different settings. MIL models allow also the identification of bioactive conformations, although
there is still a need for deeper studies in this direction. In bioinformatics, MIL has extensively been applied to a
wide range of problems such as gene–gene interactions, protein–protein interactions, protein-peptide interactions,
and modeling of genomic sequences.

Despite its attractiveness, MIL has not become a very popular approach in chemoinformatics. This could be
explained by several reasons. The first one concerns the availability of easy-to-use open-source tools (in contrast to a
plethora of tools for classical single-instance machine learning) helping to realize different MIL scenarios. Another rea-
son is related to the fact that the problem of multiple conformations which is most often considered by researchers can
be solved by transforming a multi-instance task into a single-instance task. Because of their simplicity, such strategies
as conformation descriptors averaging (or weighted averaging) are still popular, although they do not demonstrate high
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performance compared with conventional 2D approaches. However, it should be noted, that the majority of these popu-
lar approaches which were not recognized as MIL follows the concept of bag-wrappers and can be considered as a
branch of MIL. Also, some methodological developments are required regarding multiple representations in MIL, for
example, approaches for feature/descriptor selection or determination of the applicability domain of MIL models.
Recent achievements in neural network models revived the interest in MIL modeling as they propose flexible architec-
tures of neural networks to address particular problems.

To sum up, multi-instance learning is a well-established machine learning approach. Although MIL handles
molecular complexity issues much better than regular single-instance machine-learning methods, this approach still
has not received the deserved attention of chemists and biologists. As reported here case studies show that MIL lives up
to researchers' expectations. We hope that this review will help to broaden the application of MIL approaches in chem-
istry and biology.
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