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Abstract: Endometriosis, a complex inflammatory disease, affects a significant proportion
of women of reproductive age, approximately 10–15%. The disease involves the growth
of endometrial glands and stroma outside the uterine cavity, leading to tissue remodeling
and fibrosis. Hormonal imbalances, accompanied by local and general inflammation and
pain, are key features of endometriosis. Endometriotic lesions are associated with the
overproduction of cytokines, metalloproteinases, prostaglandins, reactive oxygen radicals,
and extracellular vesicles. Genetic predisposition and cytokine gene polymorphisms have
been documented. Macrophages, dendritic cells, mast cells, Th1 in the early phase, Th2 in
the late phase, and T regulatory cells play a crucial role in endometriosis. Reduced NK cell
function and impaired immune vigilance contribute to endometrial growth. The strong
inflammatory condition of the endometrium poses a barrier to the proper implantation
of the zygote, contributing to the infertility of these patients. Cytokines from various
cell types vary with the severity of the disease. The role of microbiota in endometriosis
is still under study. Endometriosis is associated with autoimmunity and ovarian cancer.
Hormonal treatments and surgery are commonly used; however, recent interest focuses on
anti-inflammatory and immunomodulatory therapies, including cytokine and anti-cytokine
antibodies. Modulating the immune response has proven critical; however, more research
is needed to optimize treatment for these patients.
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1. Introduction
Endometriosis is a prevalent chronic inflammatory condition affecting 10 to 15% of

women of reproductive age, which incurs substantial healthcare costs [1,2]. This disorder is
characterized by the growth of endometrial tissue outside the uterus, resulting in inflamma-
tion and fibrosis. The displaced tissue experiences cyclical changes akin to those of normal
endometrial tissue. Multiple risk factors contribute to the onset of endometriosis, including
familial history of the disease, nulliparity (the condition of never having given birth), early
onset of menstruation (menarche), and exposure to various environmental influences. The
condition predominantly affects women aged 25 to 45 [3] and is associated with elevated
rates of obstetric complications [4,5] and a diminished quality of life [6].

The diagnosis of endometriosis is often delayed, with a typical gap of 7 to 12 years
from the onset of symptoms to a surgical diagnosis [7,8]. The condition is systemic, affecting
50–80% of women with pelvic pain, and is a common cause of unexplained infertility [9].
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It disrupts the function of the fallopian tubes and interferes with embryo transport, with
25–50% of women undergoing fertility treatments being treated for this condition [9]. Ad-
ditionally, endometriosis impacts liver and adipose tissue metabolism, which leads to
systemic inflammation and altered brain gene expression and contributes to pain sensitiza-
tion and mood disorders [9].

Chronic inflammation, immune cell phenotype, and function changes are as-
sociated with endometriosis [3,5,10]. There are disturbances in neutrophils, mono-
cytes/macrophages, dendritic cells, natural killer (NK) cells, B cells, and T cells [11].
While benign, endometriosis exhibits cancer-like behaviors, including hyperplasia and
invasive growth [11,12]. The eutopic endometrium in affected women exhibits molecular
abnormalities, which activate oncogenic pathways and increase the production of estrogen,
cytokines, prostaglandins, and metalloproteinases, thereby supporting endometrial implant
survival [11,12]. Autoimmunity is also observed in patients with endometriosis [13].

In this review, we discuss the immune system’s involvement in endometriosis, the
critical role of cytokines, the mechanisms of inflammation and pain, and a brief overview
of anti-inflammatory, cytokine, and anti-cytokine treatments.

2. Endometriosis
The hypothesis of endometriosis encompasses several mechanisms, including retro-

grade menstruation, metaplasia, and genetic susceptibility [13–18]. The Sampson theory
explains that during menstruation, endometrial cells can survive and invade pelvic struc-
tures through tubal reflux, leading to ectopic lesions. However, it does not fully explain
the mismatch between the high incidence of reflux of menstrual blood (90%) and the lower
incidence of endometriosis (10%) [17]. No single theory comprehensively accounts for the
various clinical presentations and lesions of endometriosis, including those outside the
abdominal cavity or in men [18]. Research has also highlighted proangiogenic factors, such
as VEGF, IL-1β, and TNF-α, which play a crucial role in the vascularization of endometrio-
sis [19]. Furthermore, patients with carbohydrate antigen 125 levels (≥35 U/mL) have a
higher risk of pelvic adhesions and more extensive lesions [20].

Endometrial tissue growing outside the uterus causes symptoms like chronic pelvic
pain, menstrual pain, painful sex, and infertility in 50% of patients [2,11]. The development
of endometriosis may involve factors such as retrograde menstruation, immune response
issues, and inflammation triggered by adipokines like leptin [21]. Diet and gut microbiota
also play a role in influencing symptoms [22]. Endometrial implants depend on estrogen for
growth, and there is often an imbalance between estrogens and progestogens, along with
progesterone resistance [23]. Inflammation plays an essential role in the pathophysiology
of endometriosis. Inflammation is responsible for pain, tissue remodeling, lesion forma-
tion, fibrosis, and infertility (decreased ovarian reserve, reduced oocyte quality, impaired
endometrial receptivity) and can promote malignant transformation [5,24,25]

There are three types of endometriosis: superficial peritoneal disease (15–50% of
patients), ovarian endometrioma (2–10%), and deep infiltrating endometriosis (20%) [26].
Deep endometriosis features nodules deeper than 5 mm and is the most aggressive form,
linked to more significant pain and infertility [15,27]. Symptoms may relate to lesion
appearance, and treatment response varies by lesion type, with undifferentiated lesions
usually being deep infiltrating [28].

Endometriosis and adenomyosis, while benign, exhibit malignant traits like rapid
growth and invasiveness. Transitioning from adenomyosis to a premalignant tumor in-
volves genetic and epigenetic changes [29,30]. Integrin β3 (ITGB3) is upregulated in ectopic
endometrial stromal cells from endometriosis patients, promoting cell proliferation and in-
vasion [31–33]. ITCH, a ubiquitin E3 ligase involved in endometriosis, is downregulated in
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this condition and, when overexpressed, enhances the ubiquitination of ITGB3, affecting the
proliferation and invasion capabilities of ectopic cells [31–33]. The opposing expressions of
ITCH and ITGB3 suggest that dysregulation of the ubiquitin process may play a crucial role
in endometriosis pathogenesis [33]. Additionally, HOTAIR lncRNA influences the invasion
and migration of endometrial stromal cells via the miR-519b-3p/PRRG4 pathway [12].

Table 1 summarizes the clinical phenotypes associated with endometriosis, high-
lighting its relationship with pain, infertility, and potential comorbid medical conditions.
Diagnosing this condition can be complex due to its similarities with other clinical entities,
lack of awareness among healthcare professionals, normalization of symptoms in society,
and variability in clinical presentation.

Table 1. Spectrum of the clinical phenotypes in endometriosis based on the literature
[2–4,9–11,13,15,16,34].

Lesion Clinical Characteristics Possible Coexisting Medical Conditions

Pelvic
Superficial peritoneal [9,13]
Focal (adenomyoma) or diffuse
(adenomyosis) lesions within the
myometrium [9,13]
Ovarian endometriosis [9,13]
Deep endometriosis
Lesions > 5 mm [13,15]
Common in the rectovaginal septum
It may involve the large intestine,
bladder, ureters, and appendix [13,15]

Pelvic pain
Dysmenorrhea [9,13]
Dysuria [9,13]
Dyschezia [9,13]
Dyspareunia [13]

Pelvic
Cystitis/painful bladder [9,13]
Irritable bowel syndrome [13]
Anal bleeding [13]
Chronic endometritis [9,13]
Inflammatory bowel disease [9,10,13]
Polycystic ovary syndrome [9,10,13]
Ovarian cancer [9,13]
Uterine Fibroids (leiomyomata) [9,13]
Vulvodynia [13]
Possible link with recurrent vaginal
infections [9,13]

Extra pelvic
Thoracic [9,13,15]
Diaphragm, lungs, pleura, pericardium
Liver and spleen [9,13,15]
Abdominal wall [9,13,15]
Lymph nodes [9,10,13]
Brain [9,13,15]
Kidney [9,13,15]

Infertility
Implantation failure [2,4,9,13]
Spontaneous miscarriage [4,9,13]
Alterations of tubal structures [4,9,13]
Diminished ovarian reserve [9,13]
Placenta previa [9]
Premature delivery [9]

Extra pelvic
Fatigue [2,4,9,13]
Fibromyalgia [13]
Joint disorders [13]
Migraine [2,9,13]
Systemic [2,4,9,13]
Systemic autoimmune diseases (Lupus,
Sjögren’s syndrome, Rheumatoid
arthritis) [2,13,16,34]
Tissue-specific autoimmune diseases
(Thyroiditis, Crohn’s disease, Addison’s
disease) [2,13,16,34],
Immune-related conditions (allergies,
chronic inflammation)
Thyroid disorders [13,16,34]
Mental health conditions (depression,
anxiety) [2,9,13]

The table shows a difference between autoimmune diseases encountered in patients
with endometriosis. The most frequent systemic autoimmune diseases are lupus ery-
thematosus, Sjögren’s syndrome, and rheumatoid arthritis [13]. However, there are also
patients with tissue-specific autoimmune diseases, thyroid diseases, Crohn’s disease, and
Addison’s disease, which have very different characteristics [11,13]. The connection be-
tween endometriosis and autoimmune disease is discussed later in the text.

2.1. Genetic and Epigenetic Changes in Endometriosis

Endometriosis has genetic and environmental causes with polygenic inheritance.
Relatives of affected individuals are seven times more likely to develop the disease. A
twin study indicates that about 52% of disease variance is genetic, and six genetic markers
linked to endometriosis have been identified.: CISD2, EFRB, GREB1, IMMT, SULT1E1, and
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UBE2D3 [35]. Additional analyses have pinpointed associations with loci on chromosomes
7p15.2, 2p25.1 (GREB1), and 12q22 near VEZT [35]. A recent Genome-Wide Association
Study (GWAS) and integrative-omics analyses highlight the role of immunopathogenesis
and key signaling pathways (Wnt, NOTCH, TGFβ) in regulating endometrial cell behaviors
in endometriosis [36].

Endometriosis increases the risk of epithelial ovarian carcinoma, including clear cell,
endometrioid, and low-grade serous types [37–39]. Carcinogenesis is linked to an imbal-
ance of reactive oxygen species, antioxidants, and systemic inflammation. Endometriotic
cysts have high free iron levels, leading to oxidative stress [39]. Abnormal microscopic
features of endometriosis, such as atypical cytology and architecture, can be either benign or
malignant and have been observed in patients with ovarian cancer [40]. A clear connection
between endometriosis, ovarian cancer, and genetic predisposition is observed [41–48].
An integrated analysis of DNA profiles was used to analyze candidate genes for ovarian
endometriosis. Lei and coworkers [41] were able to show that the most relevant genes
for ovarian endometriosis are TMEM184A, GREM2, SFN, KIR3DX1, HPGD, ESR1, BST2,
PIK3CG, and RNASE1. Some of these gene candidates are also associated with cancer:
TMEM184A is a prognostic marker in cervical squamous cell carcinoma and endocervi-
cal adenocarcinoma [41]; GREM2 inhibits cancer progression and is associated with the
inhibition of adipogenesis [42], SFN [41], KIR3DX1 [41], HPGD [43], ESR1 [44], BST2 [45];
PIK3CG [41], and RNASE1 [41].

Mutations in ARID1A, PIK3CA, and PTEN may drive the progression from benign
endometriosis to cancer [46,47]. Additionally, these cancers may display mutations in
K-RAS and β-catenin/Wnt, along with microsatellite instability, indicating shared genetic
susceptibility [48,49]. Exome sequencing revealed that 79% of deep endometriosis patients
had somatic mutations; nevertheless, these mutations alone are insufficient for malignant
transformation [49].

Chou and coworkers [50], studying the genetics of killer inhibitory receptors (KIRs)
in Chinese patients with endometriosis, reported an increase in the number of patients
with centromeric A/A haplotypes and a decrease in KIR2DL2, an inhibitory gene of
the B haplotype. On the other hand, Marin et al. [51] reported a significant association
of KIR2DL2 with the risk of deep endometriosis in Euro-descendants [51]. KIR2DL2
is associated with impaired NK cytotoxic activity and clearance of ectopic endometrial
cells [50,51]. A Japanese study found a lower frequency of activating KIR3DS1 and a
higher frequency of the inhibitory KIR3DL1+/HLA-Bw4+ combination [52]. It can be
concluded that extensive studies are required to define the relationship between KIRs and
endometriosis.

The NOD-like receptor (NLR) pathway fundamentally regulates interleukins, proin-
flammatory cytokines, and NF-κB activity. Single-nucleotide polymorphisms (SNPs) of the
NOD1 and PYDC2 genes were associated with endometriosis, whereas SNPs of the NOS2
and PYDC1 genes were not [53]. Other studies have identified additional cytokine gene
polymorphisms associated with the disease, including IL1A rs2856836 and rs2856836 [54];
rs11575812, rs2069772, and rs2069762 [55]; IL-10 (rs1800872) and IFN-γ a13 allele [56];
IL-12B rs3212227 [57,58], IL-16 rs11556218, rs4778889 [59], and rs4778889 [60]; IL-17A
rs2275913 [61]; IL-18 SNP rs1946518 [62]; association with severity (TNF, rs1800629); IL-
1beta (IL1B, rs1143634) and IL1-Ra (rs2234663) [63]; and macrophage migration inhibitory
factor (MIF) rs755622 [64]. IL-8 SNP rs4073 has been related to pelvic pain in endometrio-
sis [65]. These reports show a clear association with disease and disease severity. However,
most studies focused on only one target cytokine, and integrative studies are required.

The epigenetic changes associated with endometriosis include DNA methylation
and phosphorylation, modifications to histones and non-coding RNA, and chromatin re-
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modeling and organization [66]. Specific epigenetic abnormalities have been described
in endometriosis that alter the expression of key transcription factors. For example, hy-
pomethylation of the GATA-binding factor-6, accompanied by overexpression, transforms
an endometrial stromal cell into an endometriotic phenotype [66]. Steroidogenic factor-
1 overexpression causes excessive estrogen production, which drives inflammation via
pathologically high levels of estrogen receptor-β [67].

Some miRNAs serve as biomarkers for endometriosis and could be targets for ther-
apy [68,69]. Some of these miRNAs are shared between endometriosis and atheroscle-
rosis, both diseases are linked [70]. The most relevant miRNA-detected changes in
plasma and serum are (1) increased miRNA 122, 199a, 125 b-5p, 150-5p, 342-3p, and 451a,
and (2) decreased miRNA Let-7b, Let-7d, Let-7f, 17-5p, 20c, 20a-5p, and 3613-5p [67–71].
Studies on non-coding and circular RNA and endometriosis are ongoing [72].

Impaired endometrial decidualization reduces fertility in endometriosis. Transcrip-
tomic profiling shows alterations in pathways, including defective BMP/SMAD4 signaling,
oxidative stress response, and retinoic acid signaling [70]. Constitutive NF-κB activation in
endometriotic lesions promotes inflammation, invasion, and angiogenesis while inhibiting
apoptosis [73–75]. Active endometriosis lesions become fibrous, resulting in the adherence
of tissues and organs [76].

High levels of BCL-6 (a transcription factor) in women with endometriosis are as-
sociated with decreased activation of progesterone receptors, resulting in progesterone
resistance in the endometrium [77]. The BCL6 gene is significantly upregulated in ectopic
tissues compared to tissue from healthy controls [78]. mRNA levels of estrogen-related re-
ceptors β and γ (ERRβ and ERRγ) were substantially lower in ectopic tissues from patients
with severe endometriosis than in the eutopic endometrium of healthy controls [79].

The activation of mutated K-RAS in donor endometrial epithelium and stroma pro-
motes lesion growth in a murine model of endometriosis but is insufficient for cancer trans-
formation [80]. Essential factors for the progression from endometriosis to endometriosis-
associated ovarian cancer include somatic mutations in ARID1A, K-RAS, PTEN, and
microsatellite instability [81,82]. Overall, there is a link between genetic predisposition
and polymorphism for endometriosis, along with other factors under investigation: signal
transduction modulation, miRNA, long coding, and circular RNA.

2.2. Extracellular Vesicles

Extracellular vesicles (EVs) are membrane-bound particles that transport regulatory
molecules like proteins, miRNAs, and lipids. They consist of small EVs (sEVs), such
as exosomes, and large EVs (lEVs), also known as macrovesicles, which are released
from various cellular compartments [83]. Gram-positive and Gram-negative bacteria can
generate apoptotic bodies and extracellular vesicles (BEVs) [84]. BEVs can be formed from
the microbiota in the endometrial fluid and can induce the secretion of TNF, IL-6, and IL-17,
which are involved in endometriosis [84].

Vesicles of different sizes are found in follicular fluid and affect follicle size, oocyte func-
tion, promote granulosa cell proliferation, and cell survival under stress [83,85]. Small and
large EVs differ in number, morphology, specific membrane markers, and miRNAs [83,84].
Large EVs influence steroidogenesis by affecting enzyme mRNA levels, stimulating estra-
diol secretion via the PI3K/AKT pathway [83,85]. Newly identified mitochondria-derived
EVs that contain mitochondrial proteins have a potential role in fertilization [83].

Nazri et al. [86] reported the isolation of exosomes from peritoneal fluid. The con-
centration varied by cycle phase and disease stage. Proteomic analysis revealed specific
proteins in exosomes from endometriosis patients that were absent in healthy controls.
Five proteins found exclusively in the endometriosis groups are PRDX1, H2A type 2-C,
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ANXA2, ITIH4, and tubulin α-chain [87]. Moreover, tissue-derived exosomes downregu-
lated NKG2D-mediated cytotoxicity by containing NKG2D ligands MICA/B and ULBP1-3
and the proapoptotic molecules FasL and TRAIL [87]. The presence of these ligands impairs
the immune response against endometrial tissue.

Patients with endometriosis exhibited a higher percentage of particles testing positive
for platelet biomarkers than the total number of EVs [88,89]. Platelets create a procoag-
ulative state in endometriosis patients and transport miRNA, including miRNA15b-5p
and 65 [90]. These findings suggest a potential role for platelets in the development of
endometriosis. They are found in lesions, contribute to fibrosis in damaged tissue [75,88,89],
and are associated with extracellular vesicles [91]. Nevertheless, the impact of platelets on
endometriosis still requires more research.

2.3. Microbiota and Endometriosis

Microbiota plays a role in establishing and progressing endometriosis [92,93]. The gut
microbiota may influence estrogen production and local immune inflammation, promoting
endometrial cell proliferation [92–96]. Estrogen metabolism entails a comprehensive three-
phase process that includes hepatic conjugation, microbial deconjugation, and subsequent
excretion [93,94]. Within the liver, estrogen undergoes conjugation to form water-soluble
metabolites, such as estrone sulfate and estradiol glucuronide, which facilitate biliary ex-
cretion into the gastrointestinal tract [94]. The gut microbiota plays a crucial role in this
process, particularly through specific bacteria such as Clostridium, Escherichia, Bacteroides,
and Lactobacillus, which produce the enzyme β-glucuronidase [94]. This enzyme deconju-
gates estrogen metabolites, permitting their reabsorption into the systemic circulation. This
phenomenon, called enterohepatic recirculation, is essential for regulating estrogen bioavail-
ability and maintaining hormonal homeostasis [94–96]. Dysbiosis, characterized by an
imbalance in gut microbial composition, can significantly disrupt estrogen metabolism [94].
Reducing β-glucuronidase-producing microbes may hinder estrogen reabsorption, po-
tentially resulting in systemic estrogen deficiency, adversely affecting reproductive and
metabolic functions [94–96]. Conversely, an overabundance of these bacteria may lead to
excessive estrogen recirculation, which has been linked to estrogen-dependent conditions
such as breast cancer, endometriosis, and infertility [94–96].

The endometrial environment and peritoneal cavity microbiota have been linked to en-
dometriosis [97–102]. Increased levels of Gardnerella, Streptococcus, Escherichia, Shigella, and
Ureaplasma were noted in the cervical microbiota of endometriosis patients [98]. Distinct
microbial communities were found in feces and peritoneal fluid, with increased pathogens
in peritoneal fluid and reduced protective microbes in feces [88,89]. Endometriosis pa-
tients exhibited lower alpha and beta diversity in gut microbiota compared to controls,
with significant differences in the abundance of several bacterial classes [101]. The Firmi-
cutes/Bacteroidetes ratio, indicative of dysbiosis, was also higher in endometriosis patients,
alongside notable differences in various taxa [101]. The relationship between endometritis
and endometriosis has been documented [102–104]. Clinical trials targeting dysbiosis and
endometrial lesions could benefit cases of recurrent implantation failure and pregnancy
loss [104].

Modulating gut microbiota could potentially slow endometriosis progression. Sobstyl
et al. [105] noted that interactions among microbiota and dysbiosis may activate immune
cells, producing proinflammatory cytokines that disrupt stem cell homeostasis and affect
estrogen levels. Certain gut bacteria, like Bacteroides and Lactobacillus, secrete enzymes that
elevate free estrogen levels [106]. An increase in Escherichia coli has been observed in the
feces of endometriosis patients, but the interactions between gut, vaginal, and endometrial
microbiota remain unclear [104,107].
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Patients with chronic pain and endometriosis had lower alpha diversity than controls,
showing increased levels of vaginal Streptococcus anginosus and rectal Ruminococcus [106,107].
Guo et al. [108] speculated that different Gram-negative bacteria, such as Escherichia coli,
residing in the vagina could be involved in the pathogenesis of endometriosis in humans.
In addition, gut microbiota promotes the progression of endometriosis by influencing
peritoneal immune cell populations. Then, the onset and development of endometriosis
may be related to the abnormal immune response caused by gut dysbiosis [108].

3. Immune Response in Endometriosis
3.1. Pattern-Recognition Receptors (PRRs), Pathogen-Associated Molecular Patterns (PAMPs),
Damage-Associated Molecular Patterns (DAMPs), and Endometriosis

PRRs can be classified into five families: Toll-like receptors (TLRs), C-type lectin re-
ceptors (CLRs), NOD-like receptors (NLRs), retinoic acid-inducible gene I-like receptors
(RLRs), and AIM2-like receptors (ALRs) [109–111]. Their activation leads to proinflam-
matory cytokine, interferon production, phagocytosis, and cell death [109–111]. PAMPs
include lipopolysaccharides, flagellin, viral RNA, and fungal cell walls [109–111]. DAMPs
are various molecules, such as proteins (e.g., amyloid beta, HSP70), metabolites (e.g., ATP,
uric acid), ions (Ca2+, K+), and nucleic acids (self RNA, DNA) [112].

Endometriosis may develop in two distinct phases. The initial wave occurs with an
infection and TLR activation. The second wave is characterized by sterile inflammation
resulting from oxidative stress and receptor activation by DAMPs [111–113].

Increased TLR2 B cells and myeloid dendritic cells correlate with severe endometrio-
sis [111–114]. Individuals with endometriosis have significantly higher TLR2 and TLR9
concentrations in peritoneal fluid than healthy controls [115]. In a mouse model, Ureoplasma
urealyticum infection promotes endometriosis by enhancing inflammatory mediators and
MMP-2 expression via TLR2 signaling [115]. Additionally, ectopic endometriotic lesions
show heightened TLR3 and TLR4 mRNA expression compared to eutopic tissues [116–118].

Inflammasomes are multi-protein complexes, particularly the NLRP3 inflammasome,
which activate inflammatory caspases [119]. NLRP3 binds to procaspase-1, activating
caspase-1, which cleaves pro–IL–1β and pro–IL–18 into their active forms [119,120]. This
mechanism has been linked to endometriosis’s pathogenesis, with increased caspase-1,
IL-18, and NLRP3 expression observed in ectopic endometrial tissue [121,122]. Granulosa
cells from women with endometriosis show elevated levels of the NLRP3 inflammasome
and increased IL-1β and IL-18 in follicular fluid, contributing to infertility [123,124]. NLRP3
expression is significantly higher in ovarian endometriosis, and using an NLRP3 inhibitor
has effectively reduced ovarian endometriosis lesions in animal models [125,126].

Interactions between macrophages and endometrial stromal cells via NLRP3 signaling
enhance stromal cell migration and endometriosis progression [127]. NLRP3-deficient mice
had smaller endometrial lesions, but this was reversed with wild-type macrophages [127].
Ectopic endometrial tissues showed elevated IL-18, IL-6, and IL-1β mRNA levels compared
to eutopic endometrium and controls [128,129]. NLRP3-mediated pyroptosis is associated
with fibrosis via TGF-β1, and inhibiting it may reduce fibrosis in endometriosis [124,130].
TRIM24 potentially facilitates endometriosis progression through the NLRP3/caspase-1/IL-
1β pathway [131,132]. High estrogen receptor β levels in endometriotic lesions correlate
with increased IL-1β, promoting cell adhesion and proliferation [132]. Progesterone inhibits
NLRP3 activation in normal stromal cells via autophagy, but this effect is reduced in
endometriotic cells [133].

NLR family CARD domain-containing 5 (NLRC5) acts as a negative regulator in en-
dometriosis by inhibiting inflammation [134,135]. Its overexpression increases autophagy
in ectopic endometrial stromal cells, while inhibition decreases it [135]. NLRC5 levels
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are higher in the ectopic and eutopic endometria of endometriosis patients compared to
those with leiomyoma, peaking in the ectopic endometrium, and it suppresses IL-6 and
TNF-α [136]. This suggests that NLRC5 overexpression inhibits estrogen receptor β-
mediated development and inflammatory responses in endometriosis [134–136].

C-type lectin receptors (CLRs) play a key role in the innate immune system by rec-
ognizing carbohydrates [137]. In patients with endometriosis, peritoneal fluid exhibited
increased CLR MR2 and DAP12 mRNAs, alongside decreased galectin levels [137–139]. The
mannose receptor C, type 2 (MRC2), was found to be lower in ectopic endometrial stromal
cells compared to normal ones, whereas peritoneal dendritic cells in endometriosis showed
heightened mannose receptor expression [139]. Additionally, the receptor for advanced
glycation end products (RAGEs) is associated with endometriosis and infertility [140], with
soluble RAGEs (sRAGEs) potentially impacting in vitro fertilization success [140]. The
functions of RAGEs and CLRs continue to be explored.

3.2. Innate Immune Response in Endometriosis

Tables 2 and 3 provide a general overview of endometriosis’s innate and adaptive
immune involvement. The aim is to give the reader a summary of the most critical issues
in endometriosis.

The innate immune cell response comprises several protein elements, with the com-
plement pathway and defensins being the most relevant. The complement system, a
component of innate immunity, contains over 50 proteins that aid in eliminating pathogens,
removing immune complexes and apoptotic debris, and participating in processes such
as inflammation, adaptive immunity, coagulation, metabolism, tissue regeneration, and
host–microbiota symbiosis [141,142]. Table 2 shows several pathway components that have
been related to endometriosis. On the other hand, defensins produced by Paneth cells,
neutrophils, and epithelial cells have not been involved in endometriosis (Table 2).

Macrophages are crucial in endometriosis physiopathology. Chronic macrophage
stimulation and high iron levels in the peritoneal cavity elevate reactive oxygen species in
women with endometriosis [143–145]. Estrogen prompts peritoneal macrophages to secrete
cytokines and prostaglandins through estrogen receptor-β, which decreases MMP-9 activity
and inhibits phagocytosis [25]. Upon cell activation, NF-κB p65 phosphorylation induces
the transcription of proinflammatory cytokines (TNF-α, IL-1β, IL-6, IL-8), proangiogenic
factors VEGF, growth factors like FGF-2, and adhesion molecules [146,147], and COX-1
and 2. COX-2 is responsible for the increased concentrations of PGE2 in the peritoneal
fluid [148]. The co-culture of macrophages with endometrial stromal cells enhances the
proliferation and invasiveness of these endometrial stromal cells [149].

Proinflammatory peritoneal fluid in women with endometriosis elevates FasL expres-
sion in regurgitated endometrial cells, enhancing Fas-mediated cell death of activated
immune cells and aiding immune evasion by endometrial cells [150,151]. Macrophages
initiate a regenerative program vital for lesion growth. In patients with endometriosis, peri-
toneal macrophages exhibit higher iron storage than controls [146,152] and have difficulty
managing elevated hemoglobin levels in the peritoneal fluid [153–156]. In women with en-
dometriosis, peritoneal macrophages show heightened proinflammatory markers of the M1
phenotype, while M2 macrophages often shift toward M1 [154–156]. The presence of two
subpopulations of macrophages in the lesion was reported using single-cell analysis [156]
and the role of M2a in fibrogenesis [157]. In the advanced stages of the disease, there is an
increase in M2 macrophages and a decrease in the M1 type; the opposite occurs in the initial
stages (I–II) [145,158]. Macrophages activated by IL4 can induce epithelial-to-mesenchymal
transition and fibroblast-to-myofibroblast transdifferentiation through the production of
TGF-β1 [145,152].



Int. J. Mol. Sci. 2025, 26, 5193 9 of 45

Uterine NK (uNK) cells express CD56 but no other classical NK cell or T cell markers.
The number of uNK cells changes during the menstrual cycle, pregnancy, and various
endometrial pathologies [159]. There is an increase in uNK in the mid-secretory phase [151].
CD56+ cells remain high during early pregnancy and comprise 70% of the lymphocytes at
the interface between maternal decidua and the invading trophoblast [159]. Approximately
10% of uNK are CD56+ CD16+, while 90% of the population has the CD56+ CD16−
phenotype [159]. In the peripheral blood, 90% of NK cells are CD56+ CD16+ (pNK);
CD56+ CD16+ and CD56+ CD16− uNK cells exhibit functional differences. CD16+ cells
are cytolytic, whereas CD16− uNK cells secrete cytokines [159]. Activated uterine natural
killer (uNK) cells regulate trophoblast invasion into the decidua [159]. The elevation of
CD56+ cells is higher in infertile women and pregnancy loss and appears to be directly
correlated with pelvic endometriosis [160].

Limited information exists on the roles of neutrophils and eosinophils in the en-
dometrium [161] since they are not commonly observed in the endometrium or vagina
except for infectious diseases. Nonetheless, mast cells are therapeutic targets for treating
endometriosis, inflammation, infertility, and pain. A recent review [162] describes the
different experimental treatments involving mast cells in animal models.

Myeloid-derived suppressor cells (MDSCs) are a diverse group of immature myeloid
cells, including dendritic cells, granulocytes, and monocyte/macrophage precursors,
known for their immunosuppressive properties [163]. They play a significant role in
the progression of immunological disorders, such as chronic inflammation and cancer.
MDSCs can be categorized into two primary types: polymorphonuclear (PMN) MDSCs,
also referred to as granulocyte (G) MDSCs, and monocytic (M) MDSCs. The significant
outcome of MDSC expansion is immunosuppression, which may lead to angiogenesis and
the secretion of cytokines or growth factors, potentially exacerbating the progression of
conditions such as endometriosis [163–166].

While the proportion of PMN-MDSCs in both peripheral blood and peritoneal fluid
was significantly higher in patients with endometriosis, the proportion of M-MDSCs did
not differ between control subjects and those with endometriosis [166,167]. On the contrary,
an abnormal expansion of M-MDSCs in peripheral blood and peritoneal fluid of patients
with endometriosis [167]. Additionally, MDSCs are more abundant in ectopic endometrium
than in normal endometrium [168]. M-MDSCs, alongside inflammatory cytokines and
exosome miRNA, appear to be involved in the progression of endometriosis [169]. Cysteine–
Cysteine Chemokine Receptor 5 (CCR5) and its ligand, CCL5, could drive the progression
of endometriosis by increasing the accumulation of MDSC [169]. On the other hand, MDSCs
drive the process of endometriosis by enhancing angiogenesis [170].

Another critical issue in endometriosis is the role of immature dendritic cells in the
lesions. Those cells are inefficient in antigen presentation and are inducers of tolerogenic
responses [171]. The lack of mature dendritic cells in endometriosis is also related to
the increase in Tregs, and as stated before, the effectiveness of the Tregs depends on the
milieu. Li and coworkers [172] have postulated using dendritic cells for therapeutic use in
endometriosis. The effectiveness of this proposal can likely be assessed soon.
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Table 2. Innate immune proteins and cells in endometriosis.

Component Characteristics Ref

Complement pathway

Increased expression of the protein components of the pathway in human endometriosis. [173]

Increased levels of C1q, C1 inhibitor, mannose-binding lectin (MBL), C3c, C4, and the membrane
attack complex (SC5b-9) in the peritoneal fluid of endometriosis patients. Increased expression of
1QA, C1QB, C1R, C1S, C2, C3, C4A/B, C5, C6, C7, C8A, CFB, CFH, and CFI in
ectopic endometrium.

[174]

C1q levels are correlated with vessel formation in endometriosis (human). [175]

The lectin pathway may not be involved in endometriosis in humans. [176]

Defensins There are no changes in defensin levels in women with endometriosis. [177]

Neutrophils

Increased levels of human neutrophil peptides 1, 2, and 3 have been observed in the endometrial
fluid of women with endometriosis. [178]

In endometriosis, neutrophil phagocytosis is impaired.
Neutrophils support the survival of endometrial cells and help create a microenvironment
conducive to the development and growth of lesions (mouse and human).

[179–181]

Neutrophil depletion in mice reduces the formation of endometriotic lesions. [181]

Macrophages

Elevated IL-8, C-C chemokine RANTES (CCL5), MCP-1, and MIF attracted more cells in advanced
endometriosis lesions in humans and mice. [182]

There are different types of macrophages present in endometriomas (mouse model). [183]

High iron levels in the peritoneal fluid impair the phagocytic response and increase oxygen radical
formation (human). [173,179,184]

Extracellular vesicles modulate macrophage response in endometriosis. [185,186]

The expression of CD36 in macrophages is inhibited by the high concentration of PGE2 in the
endometrioma (human). [187]

An increased expression of CD200 correlates with reduced phagocytic activity and decreased CD36
expression in endometriosis (human). [188]

TLR4 and RAGE expression in peritoneal fluid macrophages inversely correlate with
endometriosis severity (human). [189]

Macrophages play a vital role in both fibrosis and mesenchymal transdifferentiation (in humans
and mice). [190,191]

NK cells

There is a higher density of CD56 in uNK cells in patients with endometriosis undergoing IVF
treatment. [159–161]

Uterine NK cell amounts are higher in patients with endometriosis. [159,161,192]

There is a decrease in tissue immature CD56 cells following the surgical removal of endometriomas
(human). [159,193]

NK cell cytotoxic activity is significantly reduced in women with moderate to severe endometriosis
(peripheral, peritoneal, and uNK). [194,195]

Granzyme B and perforin secretion were reduced in NK cells from endometriosis patients. [195,196]

The increase in soluble MICA/B levels in the peritoneal fluid of patients with endometriosis
negatively affects the cytotoxic function of NK cells. [196]

Elevated levels of IL-6 and TGF-β1 in the peritoneal fluid of endometriosis patients are responsible
for the impaired cytotoxic activity of NK cells. [197,198]

High IL-15 levels produced by ectopic endometrial stromal cells can inhibit NK cell
function (human). [199]

IL-10 produced from co-cultures of macrophages can also inhibit NK cell cytotoxic response
(mouse and human in vitro). [200]

NK cells from patients with endometriosis have a high density of NK inhibitory receptors and
ligands. However, NK-activating receptors are also expressed at high levels. [201–203]

Mast cells

High numbers of degranulated mast cells have been found in women with endometriotic lesions. [204,205]

Increased concentrations of stem cell factor in the peritoneal fluid of women with endometriosis
are responsible for increased mast cell migration. [162]

Mast cells express estrogen receptors and are highly activated by the estrogens in the ectopic
endometrium in patients with endometriosis. [205]

Mast cells are involved in pain in women with endometriosis. [206]
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Table 2. Cont.

Component Characteristics Ref

Dendritic cells

Increased immature cells (CD80lowCD1ahigh) and fewer mature cells (CD80highCD1alow) in the
peritoneal fluid (mouse and human). [207,208]

The activity of enzyme 1-hydroxysteroid dehydrogenase type 1, which activates cortisol, impairs
dendritic cell maturation in patients with endometriosis. [209]

CD1c expression on peripheral myeloid dendritic cells was higher during menstruation in patients
with endometriosis. [210]

IL-10 produced by dendritic cells induces angiogenesis in patients with endometriosis [211]

3.3. Adaptive Immune Response

Table 3 highlights the role of T and B lymphocytes in the adaptive response in en-
dometriosis. Changes in CD8 populations are essential, while CD4 cell modifications
can be categorized into early Th1 and late Th2 responses. Inflammatory lesions promote
the production of anti-inflammatory cytokines to balance the inflammatory environment,
revealing a complex local cytokine storm beyond just immune cell mediators.

In a recent review by Knez et al. [212], it becomes clear that different Tregs
subpopulations, resting Tregs (rTregs; Foxp3loCD45RA+ T cells), suppressive Tregs
(Foxp3hiCD45RA−), and non-suppressive Tregs (non-Tregs; Foxp3loCD45RA− T cells),
should be considered when analyzing Tregs in endometriosis [212]. Tregs expressing CTLA-
4 induce tolerogenic responses (reduced T cell activation and proliferation), while IL-17
and TGFβ are crucial for lesion formation and fibrosis, respectively. Tregs interact with T
follicular cells, B cells, dendritic cells, and macrophages [212]. The suppressive response
involves the induction of M2 macrophages and the production of IL-1, thereby decreasing
the inflammatory milieu.

The role of B cells in endometriosis is less clear than that of T cells [213]. The genera-
tion of anti-endometrial autoantibodies [214] and the production of IL-17 and, in certain
conditions, IL-35, illustrate the complex nature of cell interaction [11,213]. More research is
required to understand the role of these cells in endometriosis and their probable link with
autoimmune diseases.

Table 3. Adaptive immune cells in endometriosis.

Cell Type Characteristics Ref

T cells

In patients with endometriosis, circulating CD8+ cells and activated T cells
increase, leading to higher secretion of proinflammatory cytokines and
elevated autoantibody titers.

[214–216]

CD8 cell apoptosis is elevated in endometriosis patients due to
Fas-FasL interaction. [151]

Foxp3+CD39+CD73+ Treg cells are decreased in the blood of women with deep
infiltrating endometriosis but increased in the peritoneum and
endometriotic lesions.

[217,218]

Elevated levels of estrogen and thymus-expressed chemokine (TECK/CCL25)
lead to an increase in Tregs, which in turn reduces immune surveillance in
endometriosis patients.

[219]

Disruption of Th17/Treg balance leads to heightened inflammation in ectopic
and eutopic endometria in women with endometriosis. [220,221]



Int. J. Mol. Sci. 2025, 26, 5193 12 of 45

Table 3. Cont.

Cell Type Characteristics Ref

T cells

Peritoneal fluid from endometriosis patients promoted Treg cell generation and
inhibited Th17 cell differentiation in CD4+ T cell cultures in vitro. [221]

Patients with endometriosis have higher amount of CD16+ CD8 T cells in their
peripheral blood, and CD8 T cell cytotoxicity is increased in menstrual effluent. [222]

Patients with endometriosis show low amounts of perforin-CD8 T cells in
peripheral blood. [223]

Potential T cell exhaustion indicated by PD-1 expression and increased PD-1L
presence in tissues of endometriosis patients. [224]

The Th2 immune response (IL-4, IL-10) dominates later stages of endometriosis,
whereas Th1 is present initially. CTLA-4 plays a role in chronic inflammation
and endometriosis in humans and mice.

[178,225–227]

Higher soluble circulating CTLA-4 levels in patients with endometriosis are
associated with chronic inflammation. [227]

Estrogen plays a role in regulating the GATA3 transcription factor and Th2
differentiation in patients with endometriosis. [228]

The interleukin IL-4/IFN-γ, IL-10/IFN-γ, and IL-4/IL-2 ratios are higher in
women with endometriosis, probably in the late stage. [229]

B cells

Increased circulating levels of activated B cells in patients with endometriosis. [230,231]

Local B cells secrete high levels of IL-6 and IL-17, inducing local inflammation.
They also produce anti-endometrial antibodies. [231]

The production of IL-35 by B cells is increased in patients with endometriosis. [232]

4. Cytokines and Endometriosis
Cytokines play a critical role in generating endometriosis since the inflammatory

milieu in endometriosis leads to poor quality of oocytes and infertility [6]. However, most
of the focus of the published studies has referred to cytokines produced by immune cells,
which does not represent the whole picture of events in endometriosis. The local tissue
production of cytokines must be considered, as well as the role of adipokines, which may
also have a dual role, regional and peripheral [22]. A clear example is the role of leptin in
regulating the amount of stored energy by binding to specific neurons in the brain.

Alarmins are key inducers of cytokine release by activating DAMP receptors. HMGB1,
a byproduct of cell death, enhances proinflammatory cytokine secretion, particularly un-
der hypoxic conditions, making HIF-1α modulation crucial in endometriosis [233–236].
HMGB1 is also affected by mediators like prostaglandins [237], while the role of
leukotrienes depends on LPS induction in the endometrium [237]. Early animal studies
showed reduced endometrial inflammation with leukotriene receptor antagonists [237–240],
but the results were inconclusive for human clinical trials.

Lipoxin A4 suppresses inflammation and activates autophagy, which helps reduce the
proliferative effects of endometriosis [241–243]. Resolvins, as noted in research by Dim-
itrieva et al. [242] and Gu et al. [243], also contribute to the management of endometriosis by
decreasing the inflammatory response through the signal transduction pathways induced
upon receptor/ligand interaction [244]. Additionally, resolvins may offer a promising
approach to alleviating the pain related to endometriosis [245].

Despite the enormous efforts in analyzing different types of biomarkers in endometrio-
sis reviewed by Collie and coworkers [246], there is no clear consensus on most metabolites.
The authors only reported 3-hydroxybutyrate, lactate, phosphatidic acids, succinate, pyru-
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vate, tetradecenoyl carnitine, hypoxanthine, and xanthine as the most consistent biomarkers.
Since these intermediate metabolites can be affected by different pathways, more research
is required to determine the metabolic pathways involved. Hypoxia should be carefully
analyzed as proposed by Wilson [247].

Ferroptosis represents a significant cellular event in endometriosis [248]. Iron within
the endometrioma influences the generation of radical species in conjunction with immune
cells that provoke proinflammatory and cytokine responses. As highlighted in tumor
immunology [249], exploring ferroptosis, radical production, cellular senescence, cell death,
and immune exhaustion in endometriosis is paramount. Further research is necessary to
identify appropriate pharmacological targets.

Table 4 presents a comprehensive overview of the critical cytokines involved in en-
dometriosis. Depending on the tissue environment, it categorizes these cytokines into
proinflammatory, anti-inflammatory, and those with pro- or anti-inflammatory proper-
ties. Additionally, the table includes cytokines associated with angiogenesis, cell growth,
chemokines, and inhibitory factors. While other mediators may play a role in the phys-
iopathology of endometriosis, they have not yet been thoroughly studied. In addition,
some critical issues must be considered: (1) there are differences in sample analysis, serum,
peritoneal, or endometrial fluid, and endometrioma analysis; (2) in addition, some analyses
were performed in patients with different stages of endometriosis. The table also includes
whether the results are from the human, animal model, or in vitro, which is essential,
considering possible differences that can be encountered.

Table 4. Cytokines involved in endometriosis.

Cytokine Role in Endometriosis Reference

Proinflammatory cytokines

IL-1β Increased levels in the follicular fluid of
endometriosis patients. [26,250,251]

IL-1 RA
Increased levels in the follicular fluid of endometriosis
patients. It binds active IL-1β, reducing receptor binding
and biological activity.

[252,253]

IL-2

Decreased levels in endometriotic lesions. Increase in
soluble CD25 in peritoneal fluid. [254–257]

Increased levels were reported in patients with severe
endometriosis. [258]

IL-3 Increased levels were reported in endometriotic lesions. [259–261]

IL-5 Increased levels were reported in the follicular fluid of
endometriosis patients. [260,261]

IL-6 Increased levels were reported in the follicular fluid of
endometriosis patients. It is a proinflammatory cytokine. [252,253,261]

IL-7
Higher in the eutopic as compared to the ectopic tissue of
endometriosis patients. [262]

Associated with IL-15 in maintaining endometriosis. [263]

IL-8 Increased levels were reported in the follicular fluid of
endometriosis patients. [264–266]

IL-12p40 Increased levels were reported in the follicular fluid of
endometriosis patients. [267,268]

IL-15 Higher levels were reported in the peritoneal fluid of
women with endometriosis. [263,269,270]
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Table 4. Cont.

Cytokine Role in Endometriosis Reference

IL-15 Higher levels were reported in the peritoneal fluid of
women with endometriosis. [263,269,270]

IL-16
Increased levels were reported in the peritoneal fluid
of patients with advanced stage endometriosis
(III/IV).

[271,272]

IL-17

Elevated levels of IL-17 have been observed in
patients during the early stages of the disease. IL-17
promotes the proliferation, invasion, and
implantation of endometriotic cells. Additionally,
increased IL-17 levels have been linked to higher
levels of IL-8, VEGF, CSF-1, and GM-CSF.

[273–275]

IL-18
Increased levels have been reported in the peritoneal
fluid of endometriosis patients. Affects
endometrial receptivity.

[276]

IL-23
Increased levels are observed in the follicular fluid of
endometriosis patients, stages III–IV > stages I–II.
Involved in IL-17 production and inflammation.

[277]

IL-25 Increased levels were reported in the peritoneal fluid
of patients with endometriosis. [278]

IL-31 Increased levels were reported in the plasma of
endometriosis patients [279]

IL-32

Increased concentrations of IL-32 were reported in the
peritoneal fluid of patients with endometriosis. An
increase in IL-32 is correlated with elevated levels of
IL-8 and CCL2 and enhanced cell proliferation.

[280,281]

IL-34 Increased serum levels in patients with endometriosis.
Autocrine production promotes endometriosis. [282]

IL-35
Enhanced levels are reported in ectopic endometrium.
Suppresses immune response, increasing the growth
of endometrial cells.

[283]

IL-36α, β, γ and Receptor Increased levels are reported in the peritoneal fluid of
endometriosis patients. [284]

IFNγ

Decreased levels are reported in the peritoneal fluid of
endometriosis patients. It induces macrophage
activation (M1) and enhances the
proinflammatory response.

[178,256,257]

TNFα
High levels of TNFα are found in patients with
endometriosis, particularly at their highest in those
with severe endometriosis.

[285,286]

CXCL chemokines
In women with endometriosis or polycystic ovary
syndrome, the levels of CXCL1-8, 10, 12, 13, and 16
are increased, while CXCL9 and 14 are decreased.

[287]

FRACTAL-KINE

Decreased levels were reported in the peritoneal fluid
of patients with endometriosis. [288]

Increased levels were reported in patients
with endometriosis. [289]
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Table 4. Cont.

Cytokine Role in Endometriosis Reference

MCP-1 (CCL2)

Increased follicular fluid levels in endometriosis
correlate with severity and attract neutrophils, NK
cells, and lymphocytes linked to RANTES and IL-8.

[290,291]

Association with hepatocyte growth factor and
insulin-like growth factor-1. [292]

MCP-2/3/4 Increased levels are reported in patients
with endometriosis. [286]

MIP-1α
A decrease in cytokine levels was reported in patients
with endometriosis.
Increased levels were reported.

[289]

MIP-1β Increased levels were reported in patients
with endometriosis. [289]

eotaxin 2/3 Increased levels were reported in patients
with endometriosis. [289]

ENA-78 Increased levels were reported in patients
with endometriosis. [289]

RANTES (CCL5) Increased levels were reported in patients
with endometriosis. [286,289]

MIF-1
Increased levels were reported in patients with
endometriosis. The levels are associated with
17β-estradiol. MIF-1 is a proinflammatory cytokine.

[293–295]

CSF-1 Increased levels were reported in patients with
severe endometriosis. [296–298]

PDGF Increased levels were reported in the peritoneal fluid
of patients with endometriosis. [298–300]

VEGF
Increased levels were reported in the peritoneal fluid
of patients with endometriosis. Involved in
increased vascularization.

[298–302]

bFGF Increased levels were reported in the peritoneal fluid
of patients with endometriosis. [298–301,303]

Anti-inflammatory cytokines

TGFβ
Patients with severe endometriosis exhibited
increased levels of TGFβ, which play a role in the
fibrosis observed in these individuals.

[77,304,305]

IL-10
Increased levels were found in the follicular fluid of
patients with endometriosis, produced by
various cells.

[266,306]

IL-19 A decrease in serum levels of IL-19 has been observed
in patients with endometriosis. [307]

IL-22
A decrease in serum levels was reported in patients
with endometriosis. [308]

IL-22 is implicated in endometrial cell invasion in
humans and mice and carcinoma cell proliferation. [309,310]

IL-37
Increased levels are reported in the peritoneal fluid of
endometriosis patients. Involved in anti-inflammatory
response in vitro and animal models.

[253,284,311]
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Table 4. Cont.

Cytokine Role in Endometriosis Reference

IL-38
Increased levels are reported in the peritoneal fluid of
endometriosis patients. Involved in
anti-inflammatory response.

[284]

Mixed effects proinflammatory and antinflammatory

IL-4 Increased levels in the follicular fluid of
endometriosis patients. [312–316]

IL-13
Differential expression in ectopic and eutopic
endometrium in endometriosis patients. High levels
of the cytokine have been associated with infertility.

[314,317]

IL-27
IL-2 + IL-27 are involved in the growth of human
endometrial cells in vitro.
Its role in endometriosis is still controversial.

[318]

IL-33

Increased serum levels were reported in the peritoneal
fluid of patients with deep endometriosis, which
could induce an anti-inflammatory response.

[319,320]

It is involved in epithelial–mesenchymal transition. [321,322]

EGF
Increased levels were reported in the peritoneal fluid
of endometriosis patients involved in
endometrial invasion.

[298–301,303]

GM-CSF

Increased levels were reported in patients with severe
endometriosis. It is controversial since it may have
local anti-inflammatory effects.

[29,323,324]

Autoantibodies against GM-CSF are present in the
serum of patients with deep endometriosis. [325]

The table is divided into three parts: (1) proinflammatory cytokines, (2) anti-
inflammatory cytokines, and (3) mixed effects. The separation facilitates the analysis
based on the role of the cytokines. The cytokines with mixed effects refer to cytokines
whose general description can be anti-inflammatory; however, their role in the lesion
may differ.

Table 5 represents the list of adipokines that have been studied in endometriosis.
However, it is essential to note that obesity is not prevalent in patients with endometrio-
sis. Patients with endometriosis usually have a low BMI, and obesity increases its sever-
ity [298,303,326–328]. Various hypotheses have been proposed regarding the potential
role of adipokines in endometriosis [326,328]. Even though there are disagreements about
the relationship between obesity, BMI, and endometriosis, most researchers support the
proposal of a dual effect of adipokines in the tissue and the central nervous system. The
finding of adipokines in the lesion and their possible role in lesion growth and modulation
of the immune response requires more research.

It is important to note that the precise mechanisms underlying the diverse cytokines
involved in endometriosis remain unclear. A comprehensive understanding of the chrono-
logical progression of this condition is critical for developing novel treatment strategies
aimed at reducing both the growth of lesions and associated pain.
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Table 5. Adipokines involved in endometriosis.

Adipokine Characteristics References

Leptin

Elevated leptin levels have been observed in serum and peritoneal fluid in
patients with endometriosis. [327,329,330]

Researchers found a positive association between leptin levels and
endometriosis in the mouse model. [21,331]

Controversial results have been reported in humans. [332]

Elevated local leptin levels in endometriosis lesions are associated with
increased transcription factor HIF-1α. [333]

Endometriosis may be related to dysfunctional adipose tissue, which affects
metabolism, browning, body weight regulation, and pain pathways. [21,334]

Adiponectin Low circulating adiponectin levels in women are associated
with endometriosis. [335,336]

Resistin
Increased concentrations have been reported in women with endometriosis. [337,338]

Research suggests a potential correlation between resistin and IL-23 levels. [277]

Retinol binding protein 4 (RTB4)

Increased plasma levels of RBP4 have been reported in patients
with endometriosis. [339]

RTB4 may play a role in the infiltration of immune cells in
human endometriosis. [340]

Visfatin/NAMPT and resistin The three adipokines may be secreted locally within the human endometrioma
as part of an inflammatory response, regardless of the stage of endometriosis. [341]

Ghrelin, GLP-1, visfatin, GLP-1.
A reduction in ghrelin, GLP-1, glucagon, and visfatin levels in the peritoneal
fluid of women with endometriosis may contribute to lesion development by
proinflammatory macrophages.

[341]

5. Mechanisms of Pain in Endometriosis
Endometriosis-associated pain stems from various mechanisms, including nociception,

inflammation, and altered pain processing in the nervous system. It is frequently linked to
psychological distress and fatigue. Additionally, angiogenesis leads to the growth of nerve
fibers that contribute to this pain [341,342]. The size of the lesions appears to be related to
pain intensity in patients with lesions on the intestinal wall [342–344]. However, there is no
significant correlation between the graded severity of morphological characteristics and
the intensity and character of pain symptoms [342–345]. It can be concluded that there is
no consistent correlation between endometriosis and reported pain severity.

Two main descriptions of pain occur in endometriosis: (1) Nociceptive pain occurs
due to physical damage to non-neural tissues, particularly from endometrial lesions and
the surrounding structures, such as the pelvic lining. This type of pain can be classified
as visceral, which relates to internal organs, or somatic, which pertains to muscles and
skin [346]. (2) Nociplastic pain occurs when the nervous system becomes oversensitive,
amplifying pain signals. Nociceptive stimuli can trigger it and persist even after the initial
injury has healed. The effect is due to increased sensory nerve density and a reduced
density of sympathetic nerve fibers in endometriotic lesions [347].

An imbalance in sensory and sympathetic nerve fiber density within lesions is asso-
ciated with pain severity in women with endometriosis [346–348]. Compared to women
without endometriosis, there is an increase in sensory nerve fibers and a decrease in sym-
pathetic nerve fibers, which may contribute to pain [346–348]. In women diagnosed with
endometriosis, there is a significant elevation in the density of nerve fibers within en-
dometriotic lesions and the adjacent myometrium compared to normal peritoneal tissue.
This heightened density, particularly of sensory nerve fibers, positively correlates with the
severity of pain patients report [346–348]. The potential mechanisms contributing to the
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severity of pain include (1) sensitization of nociceptors within the endometriotic microen-
vironment; (2) neurogenic inflammation accompanied by the release of proinflammatory
neuromediators; and (3) central sensitization, which involves an amplification of central
pain signal processing [342,343,346–348].

The interaction between macrophages and nerves constitutes a significant factor in
pain associated with endometriosis [347–349]. Within this interaction, cytokines are linked
to the phenomenon of inflammatory pain [346,347]. Moreover, various immune cells and
cytokines can also play a role in the pain observed in lesions [348].

Endocannabinoids and phytocannabinoids possess anti-inflammatory, anti-nociceptive,
and anti-proliferative properties that may aid in managing endometriosis, characterized by
inflammation, increased vascularity, and pain [350–352]. While endometriotic lesions show
varying levels of endocannabinoids, their exact role in disease progression and potential
bystander effects remains unclear [350–352]. In vivo murine model studies indicate that syn-
thetic cannabinoids and specific endocannabinoids, such as palmitoylethanolamide (PEA),
possess anti-inflammatory properties and can inhibit the proliferation of endometriosis-like
lesions [351]. However, the exact mechanism is still elusive.

According to Farooqi and colleagues [352], both the endocannabinoid system (ECS)
and gut microbiota play significant roles in the pathophysiology of endometriosis. The
ECS is essential for regulating inflammation and modulating pain perception, while gut
microbiota significantly influences immune responses and hormonal equilibrium [352].
Worsening symptoms of endometriosis have been associated with an imbalance in the ECS
and gut microbiota, linked to elevated levels of endocannabinoids resulting from alterations
in CB1 receptor expression [352]. Furthermore, an increase in Prevotella and Escherichia
coli prevalence within the gut microbiota correlates with exacerbated gastrointestinal
and endometriosis symptoms [352]. These dysbioses are also associated with heightened
circulating levels of proinflammatory cytokines, such as TNF-α and IL-6 [352]. Nevertheless,
elevated endocannabinoids, particularly 2-AG, may confer protective effects on the gut by
mitigating inflammation and enhancing gut permeability.

Increased levels of the neurotransmitters glutamate and glutamine were found in
the anterior insula of endometriosis patients, enhancing connectivity to the prefrontal
cortex (where pain-related memories are stored) [353,354]. Other areas of the brain are also
affected. According to Eippert et al. [355], the periaqueductal gray, which is involved in
pain-modulatory pathways, is enlarged in individuals with pain, and measurable changes
are observed in the thalamus, insula, and putamen [342,353–355].

In endometrial lesions, macrophages and nerve fibers interact to promote
pain [349,353–356]. Ectopic endometrial lesions secrete nerve fibers that produce CSF-
1 and CCL2, which attract macrophages to the periphery of nerves and regulate their
polarization toward the M2 phenotype [356]. On the other hand, macrophages, incu-
bated with CSF-1 and estrogen, produce brain-derived neurotrophic factor (BDNF) and
neurotrophin-3 (NT-3), which stimulate neurite growth from ganglia explants [356].

Endometriosis-related pain is classified as neuropathic or neuroinflammatory [357].
Ectopic endometriotic lesions promote inflammation and disrupt the transmission of inflam-
matory mediators, altering how nerve fibers process and transmit information [357,358].
Disorders that are characterized by sensory dysfunction, such as overactive bladder
syndrome and irritable bowel syndrome, are commonly co-diagnosed with endometrio-
sis [357,358]. These comorbidities suggest a more complex pathophysiology for pain in
this condition that cannot be explained by endometrial lesions alone [342–344,353–358].
Chronic remodeling of the nervous system may occur in shared sensory neural pathways
to induce a state of protracted peripheral and central sensitization and chronic pain in
patients with endometriosis [357]. Microgliosis, astrogliosis, and enhanced substance P
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neurokinin-1 receptor immunoreactivity have been observed within the spine in mice with
endometriosis, suggesting the development of neuroinflammation and the sensitization
of spinal circuitry in this condition [359]. Prostaglandin E2, TNFα, NGF, RANTES, IL-8,
and IL-1β are elevated within the peritoneal fluid of endometriosis patients [360]. These
mediators can all activate sensory nerve endings directly [12,357–360].

Neuroangiogenesis in ectopic endometriotic lesions explains the transmission of the
pain. An increased density of miniature, unmyelinated nerve fibers (sensory afferents, sym-
pathetic, and parasympathetic efferents) has been found in endometrial lesions [360,361].
The local production of VEGF and NGF by macrophages supports neuroangiogene-
sis [12,360–364]. On the other hand, the activation of sensory afferent nerves initiates
the recruitment of mast cells and the subsequent release of proinflammatory cytokines
(TNF-α, NGF, PGE2, IL-1β), which contributes to a chronic state of neurogenic inflamma-
tion [365]. Neurotrophic factors produced by macrophages, such as Netrin-1, insulin-like
growth factor-1, and ten-eleven translocation 3 (TET3), play a role in the pain associated
with endometriosis [365–367].

Recently, the role of IL-33 in macrophage/neuron-induced pain has been studied [368].
IL-33 enhanced the release of TNF-α and IL-1β, facilitating macrophage recruitment and
neurogenesis in ectopic lesions [368]. IL-33 increased the expression of the transient
receptor potential vanilloid 1 (TRPV1), which is responsible for the phenomenon [368]. In
women with endometriosis and severe chronic pelvic pain, serum IL-16 levels were higher
compared to women with mild pain [61].

Tregs may influence endometriosis pain by modulating macrophages to create a local
tolerogenic response, which reduces proinflammatory cytokines, decreases cell migration,
and mitigates estrogen’s effects on endometriomas [213]. It has recently been found that
the meningeal Treg (mTreg) inhibits nociception in female mice [369]. mTreg cells pro-
duced enkephalin, which acted on delta opioid receptors in MrgprD+ sensory neurons to
reduce pain [369]. However, enkephalin was unnecessary for Treg cell-mediated immuno-
suppression, and the process depends on sex hormones [369]. One can envision that the
understanding of pain in patients with endometriosis is just beginning.

6. Endometriosis and Autoimmunity
There is an association between endometriosis and autoimmune diseases. Women with

endometriosis may have a higher risk of conditions such as systemic lupus erythematosus,
Sjögren’s syndrome, rheumatoid arthritis, celiac disease, multiple sclerosis, and inflamma-
tory bowel disease compared to those without endometriosis [13,370–372]. Endometriosis
shares similarities with autoimmune diseases, featuring elevated cytokines, B cell activation,
T and B cell function abnormalities, autoantibody formation, and decreased apoptosis [13].
Women with endometriosis have alterations in B cell activity and an increased incidence of
autoantibodies [13]. These autoantibodies can be directed against various phospholipids,
histones, and polynucleotides [13], and against the ovary, endometrium, nucleus, smooth
muscle, cardiolipins, sperm, laminin, and lupus anticoagulant [13]. Antinuclear antibodies
(ANAs) in pelvic endometriosis appear to be an immunological secondary effect and do not
represent an aggravating factor in patients with pelvic endometriosis [373]. A correlation
between the diameter of endometriomas and anti-thyroid peroxidase antibodies has been
reported [374]. Patients with endometriosis exhibit elevated transferrin and alpha-2-HS
glycoprotein levels in their serum and peritoneal fluid, which may contribute to observed
autoimmunity to these proteins [375]. However, no recent reports of these autoantibodies
(transferrin and alpha-2-HS glycoprotein) and their impact on the disease exist.

Dotan and coworkers [376] have addressed the issue of SARS-CoV-2 and molecular
mimicry in endometriosis. Several other triggers of this process may be observed with viral
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or bacterial infection and local or gut microbiota. This topic opens an interesting point to
address from the pharmacological point of view, preventing autoimmunity.

IgG and complement deposits have been found in the eutopic endometrium in women
with endometriosis, corresponding to a decrease in the total serum complement levels [175].
This may have been caused by the ectopic endometrium acting as a foreign trigger that
induced an autoimmune response, resulting in infertility [175]. It is not yet clear whether
the formation of autoantibodies in endometriosis is a natural response to chronic local
tissue destruction or a pathological reaction leading to more generalized autoimmune
dysfunction [175].

A singular report exists regarding the formation of autoantibodies to GM-CSF in
individuals diagnosed with deep endometriosis [325]. Nonetheless, it is highly plausible
that autoantibodies against additional cytokines are present in patients with endometriosis,
considering the unique characteristics of this population. These autoantibodies could
significantly impact the equilibrium of cytokines within the microenvironment and may
contribute to the diminished immune responsiveness often observed in endometriosis.
Further investigation into this subject is essential, as it may facilitate the classification of
these patients while also providing new therapeutic targets and guidelines for treatment.

7. Immunological Therapies in Endometriosis
Figure 1 provides an overview of the cells and processes involved in endometriosis to

understand the complexity of the endometrial lesion. Multiple factors generate autoimmu-
nity based on cell death; however, the possible induction of malignancy, mainly ovarian
carcinoma, is also represented.

Figure 1. A general summary of endometriosis as discussed in this review.

Endometriosis is typically managed through various therapeutic options, including
progestogens, combined oral contraceptives, gonadotropin-releasing hormone antagonists
and agonists, androgens, aromatase inhibitors, selective progesterone receptor modulators,
selective estrogen receptor modulators, nonsteroidal anti-inflammatory drugs, and/or
surgical excision of endometriotic lesions [220,377]. However, many of these treatment



Int. J. Mol. Sci. 2025, 26, 5193 21 of 45

modalities are associated with adverse effects, particularly concerning the degree of hy-
poestrogenism, and there is a notable risk of recurrence following the cessation of therapy.
Considering the significant inflammatory component of endometriosis, recent research
has increasingly concentrated on utilizing anti-inflammatory and immunomodulatory
therapies. Table 6 summarizes therapies for endometriosis with immunomodulatory and
anti-inflammatory effects, ranging from common drug treatments to natural products. On
the other hand, Table 7 is focused on cytokine inhibition or addition.

In a recent review, Zhang et al. [378] examined potential therapies targeting immune-
associated factors in endometriosis. The objective is to improve the function of NK cells
and macrophages. NK cells can be modulated by blocking inhibitory receptors, using
cytokines such as IL-2 and IL-12, or through immune checkpoint therapy (anti-PD-1 or
anti-PDL-1) [378]. Currently, this type of therapy has not been tested in patients with
endometriosis [378]. Regarding macrophages, potential therapeutic targets include the sup-
pression of the M2 phenotype or the activation of the M1 phenotype. These two approaches
are lacking in the treatment of endometriosis. Another possible therapy option may be us-
ing C3 inhibitors or the blockade of C5a and C3a [378]. Anti-IL-33 antibody treatment of the
endometriosis mouse model slightly, but not significantly, reduced peritoneal inflammation
and reduced peritoneal cell concentration compared to the isotype control [379].

Combining immunophilin suppressors with steroid hormones, such as progesterone,
may be a promising approach to treating chronic inflammation associated with endometrio-
sis. Tacrolimus, cyclosporine, progesterone, and analogs can effectively suppress FKBP51,
a common target of these agents [380].

Three different drugs that can block ribosome biogenesis, including inhibitors against
mTOR/PI3K (GSK2126458) and RNA polymerase I (CX5461 and BMH21), were used in a
mouse model with human endometriosis features [380]. The lesion numbers were reduced
in treated mice compared to those treated with the vehicle [380].

Other treatment options include drugs with antiangiogenic effects, such as those
targeting VEGF (anti-VEGF antibody) or inhibiting tyrosine kinase (Sorafenib, Sunitinib,
Pazopanib) [19]. All the studies with these agents are in animal models. Another drug
with antiangiogenic effects through VEGF receptor-2 is cabergoline (a dopamine ago-
nist). In a clinical trial, this drug reduced endometrioma size more effectively than an
LHRH agonist [381]. In another small trial, cabergoline decreased pain in patients with
endometriosis [382].

Novel therapeutics have been proposed for the management of endometriosis. Iron
chelators have demonstrated promising outcomes in animal models [383,384]. Other
strategies aim to ameliorate hypoxic conditions. Sitagliptin has been shown to mitigate
hypoxia-induced injury by inhibiting the overproduction of COX-2, PGE2, TNF-α, and IL-6,
yielding successful results in animal studies [385,386]. The anti-hypoxic agent myo-inositol
trispyrophosphate (IPP) enhances oxygen release from hemoglobin and has effectively
inhibited the proliferation of endometrial cells in hypoxic conditions in preclinical mod-
els [387]. Research has examined the anti-cancer polypeptide vaccine RESAN, which has
been shown to reduce lesion size in mouse models [388]. There are no human reports on
the efficacy of this vaccine due to the absence of clinical trials. The use of extracellular
vesicles to treat endometriosis presents a promising avenue, particularly for the delivery of
miRNA [389]; nevertheless, this research domain necessitates further exploration and the
establishment of consensus among the scientific community.

An interesting proposal has been published that involves modulating kisspeptin
neurons, impacting the hypothalamic–pituitary axis and controlling LH and FSH, and
consequently, endometrial growth [390]. Since the modulation of pain may involve sex
hormones and the production of endorphins and sensory neurons [391], it would be
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interesting to analyze the induction of endorphins as modulators of endometriosis growth
in preclinical models. The topic is engaging, and many patients will benefit from therapy.
Future research in this area is anticipated to focus on these patients.

Although pharmacological interventions targeting cytokines have not undergone
analysis in clinical trials, epidemiological data concerning the efficacy of various inhibitors
of TNFα and IL-1β concerning endometriosis and fertility must be examined. Such an
examination may unveil novel pathways for both research and therapeutic intervention.

Table 6. Therapies for endometriosis with immunomodulatory and anti-inflammatory effects. Tradi-
tional drugs and natural products.

Drug Effects References

Glucocorticoids
Inhibit the inflammatory milieu in endometriosis. Prevent the
self-renewal, migration, and differentiation of endometrial
stem cells and endometriosis formation.

[392–394]

Statins

Statins reduce inflammation and inhibit the formation of new
blood vessels, acting as anti-angiogenic agents in the murine
model.

[395,396]

In a pilot study, administering atorvastatin 10 mg daily for 7
days improved nitric oxide-mediated, endothelial-dependent
cutaneous microvascular function in women with
endometriosis.

[397]

Pentoxifylline

It reduces inflammation by regulating the immune response. [398]

There was an increased tendency for pregnancy after surgery
in the group treated with pentoxifylline compared to the
placebo.

[399]

Patients who received pentoxifylline showed significantly
improved visual analog scale scores after 3 months.
There is insufficient evidence to recommend pentoxifylline for
the treatment of subfertility and pain related to endometriosis.

[400–402]

Peroxisome proliferator receptor γ
(PPARγ) activators

The compounds inhibit cell proliferation, induce apoptosis in
endometriotic epithelial and stromal cells, reduce
vascularization, and repress VEGF, IL-6, IL-8, and TNF-α gene
expression.

[403]

Ciglitazone decreased the size of ectopic endometriotic tissues
in a rat model of endometriosis. [404]

In a baboon model of endometriosis, Rosiglitazone decreased
the size of the endometriotic lesion. Pioglitazone improved
embryo implantation rates in infertile women with
endometriosis undergoing IVF by reducing serum RANTES.

[405]

No clinical trial has been published. [406]

Rapamycin (mTOR inhibitor)

Rapamycin treatment reduced the volume of lesions in a
mouse model of endometriosis. [407]

In women with infertility due to endometriosis, rapamycin
has improved rates of fertilization, implantation, clinical
pregnancy, and live births.
More clinical trials are needed to ascertain the possible benefit
of rapamycin treatment.

[408]
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Table 6. Cont.

Drug Effects References

Bentamapimod (c-Jun N-terminal
kinase inhibitor)

In a mouse and rat model of endometriosis, bentamapimod
led to a reduction in lesion size. [409]

In baboons with induced endometriosis, bentamapimod
decreased the lesions’ area and volume.
No clinical trial has been published.

[410]

Ligustrazine (Tetramethylpyrazine)
A natural product has demonstrated a broad
anti-inflammatory effect in preclinical trials.
No clinical trial has been published.

[411]

Resveratrol

Several preclinical trials have published the anti-neoplastic,
anti-inflammatory, anti-oxidative, anti-microbial,
anti-atherogenic, and anti-angiogenic effects of resveratrol.

[412]

Prevents the progression of experimental endometriosis in
living organisms and reduces the invasiveness of endometrial
stromal cells in laboratory tests.

[413]

Resveratrol reduced MMP-2 and MMP-9 levels in the
endometrium and blood of women with endometriosis. [414]

Treatment with resveratrol reduced TNF-α2 and VEGF
expression in patients with endometriosis. [415]

There is not enough evidence to support the use of resveratrol
in humans. [416]

Astaxanthin (antioxidant)

Treatment with astaxanthin reduced serum levels of
malondialdehyde, IL-1β, and TNF-α, decreasing IL-6 and
TNF-α levels in follicular fluid in one triple-blind
placebo-controlled clinical trial of patients undergoing
assisted reproduction.

[417]

Curcumin

In ectopic endometrial stromal cells cultured in vitro, it
suppresses the TNF-α-induced secretion of IL-6, IL-8, and
MCP-1, and the mRNA expression of ICAM-1 and VCAM-1.

[418]

In eutopic endometrial stromal cells of patients with
endometriosis, in vitro treatment inhibits the secretion of IL-6,
IL-8, G-CSF, MCP-1, and RANTES.

[419]

In a small trial involving nano-micellar curcumin,
inflammatory and oxidative patterns linked to IVF treatment
in patients with endometriosis showed improvement.

[420]

There is not enough evidence to support the use of curcumin
in humans. Well-designed clinical trials are needed. [421]

Quercetin

Experimental data on quercetin have demonstrated its
antioxidant, anti-inflammatory, and
anti-angiogenic properties.

[422]

It decreased the volume of endometriosis lesions in a
mouse model.
No clinical trials have been published.

[423]
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Table 6. Cont.

Drug Effects References

Epigallocatechin gallate (EGCG)

EGCG notably decreased the proliferation, migration, and
invasion of endometrial and endometriotic stromal cells
in vitro model of human endometriosis. In mouse models, it
also reduced the growth of endometrial lesions.
No clinical trials with the purified compound have been
published, although trials utilizing green tea have shown
some improvement.

[424,425]

N-palmitoyl ethanolamine plus
trans-polydatin

It induces anti-inflammatory effects in women with
endometriosis. It reduced pelvic pain in women
after laparoscopy.

[426]

A meta-analysis showed no conclusive evidence. [427]

Cannabidiol

It reduced the diameter, volume, and area of lesions in rat
models of endometriosis. It exhibited an anti-fibrotic effect,
lowering IL-1β, TNF-α, and PGE2 levels in peritoneal fluids.

[428]

It alleviated pelvic pain and related symptoms.
Long-term use may be linked to cannabis use disorder,
psychosis, and mood disturbances.
No clinical trials have been published.

[429,430]

Fenretinide (synthetic retinoid)

Fenretinide reduces the levels of retinol fatty acid binding
protein 4.
It is used in cancer and cystic fibrosis, but there are no clinical
trials in patients with endometriosis.

[431–434]

Vitamin D The effects of vitamin D supplementation have produced
controversial results that require further studies. [435–437]

Table 7. Cytokine-related treatment for endometriosis.

Treatment Effects References

Antibody-based (anti-fibronectin F8)
pharmacological delivery of
interleukin 4 (F8-IL4)

In a mouse model of endometriosis, F8-IL4 reduced the
number and volume of lesions while lowering the expression
of genes related to cell adhesion, invasion, and
neovascularization, such as integrin β1, MMP-3, MMP-9, and
VEGF, without affecting inflammatory cytokines.
No clinical studies have been performed in humans.

[438]

IL-12

IL-12 enhances cytokine production and increases NK cell
activity. An intraperitoneal injection of IL-12 reduced lesion
size in a mouse model by activating NK cells and inhibiting
the development of endometriotic lesions.
No studies have been performed in humans.

[439,440]

Interferon (IFN) I

In a rat model of endometriosis, the subcutaneous
administration of IFN-α reduced the volume of
endometriosis lesions.

[441]

IFN-β1a inhibited the in vitro growth and movement of
endometrial stromal cells obtained from patients. [442]

IFNα2b treatment increased the later recurrence of
endometriosis in a small clinical trial. [443]
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Table 7. Cont.

Treatment Effects References

IL-37

Anti-inflammatory effects. In mouse models, IL-37 reduced
the size and weight of endometriotic-like lesions and the
expression of IL-1β, IL-6, IL-10, TNF-α, VEGF, and ICAM-1 in
a murine model of endometriosis.
No studies have been performed in humans.

[444,445]

Anti-TNF-α

In patients with endometriomas who were treated using
assisted reproductive technology, etanercept was shown to
increase the pregnancy rate and double the live birth rate.
However, this result was not statistically significant.
(p = 0.052).

[446]

In a retrospective study, peri-implantation treatment with
TNF-α inhibitor increased the implantation rate and clinical
pregnancy rate significantly compared with non-treated
controls; however, no changes in the pregnancy rate of live
birth were observed. Cochrane reviews of humans with
endometriosis did not find conclusive evidence.

[447]

Epidemiological data on young women treated with
anti-TNFα therapy and endometriosis incidence have not
been published.

[448]

IL-1 antagonist
(anakinra)

In a pilot study using anakinra, mild improvements were
observed. A reduction in the inflammatory markers BDNF,
IL-1RA, and IL-6 was reported.

[449]

8. Conclusions
Endometriosis is an inflammatory disorder characterized by elements of autoimmu-

nity and a reduced state of immune surveillance. This condition is defined by the abnormal
proliferation of functional endometrial glands and stroma located outside the uterine cavity,
often resulting in significant pain and infertility. The pathogenesis of endometriosis is mul-
tifaceted, involving immunological, hormonal, and genetic factors. Cytokines, adipokines,
and growth factors are integral components in this process. Furthermore, the ectopic
endometrium may display functional properties that differ from the eutopic endometrium.
A notable association has been established between endometriosis and ovarian cancer.
Autoimmunity is frequently observed in patients diagnosed with endometriosis, and the
generation of autoantibodies may be influenced by events occurring within the lesions.
Increased iron accumulation, elevated formation of oxygen radicals, and infections (result-
ing from dysbiotic events within the microbiota) can enhance antigen secretion. Future
investigations into molecular mimicry may elucidate the mechanisms underlying the gener-
ation of autoimmunity. While anti-inflammatory therapy presents a promising strategy for
managing this condition, further clinical studies involving human subjects are necessary to
validate its efficacy.

Further epidemiological studies are necessary to investigate the relationship between
autoimmunity and endometriosis and to examine the use of immunomodulators among
young women to assess the incidence of endometriosis. Additionally, the implementation of
cytokine and anti-cytokine therapies in fertility clinics addressing issues such as implanta-
tion failure and recurrent miscarriages may yield valuable insights for longitudinal studies
and facilitate the development of novel pharmacological treatments for endometriosis.
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74. Zdrojkowski, Ł.; Jasiński, T.; Ferreira-Dias, G.; Pawliński, B.; Domino, M. The Role of NF-κB in Endometrial Diseases in Humans
and Animals: A Review. Int. J. Mol. Sci. 2023, 24, 2901. [CrossRef] [PubMed]

75. Vissers, G.; Giacomozzi, M.; Verdurmen, W.; Peek, R.; Nap, A. The role of fibrosis in endometriosis: A systematic review. Hum.
Reprod. Update 2024, 30, 706–750. [CrossRef]

76. Anchan, M.M.; Kalthur, G.; Datta, R.; Majumdar, K.P.K.; Dutta, R. Unveiling the fibrotic puzzle of endometriosis: An overlooked
concern calling for prompt action. F1000Research 2024, 13, 721. [CrossRef]

77. Almquist, L.D.; Likes, C.E.; Stone, B.; Brown, K.R.; Savaris, R.; Forstein, D.A.; Miller, P.B.; Lessey, B.A. Endometrial BCL6 testing
for the prediction of in vitro fertilisation outcomes: A cohort study. Fertil. Steril. 2017, 108, 1063–1069. [CrossRef]

78. Saadat Varnosfaderani, A.; Kalantari, S.; Ramezanali, F.; Shahhoseini, M.; Amirchaghmaghi, E. Increased Gene Expression of
LITAF, TNF-α and BCL6 in Endometrial Tissues of Women with Endometriosis: A Case-Control Study. Cell J. 2024, 26, 243–249.
[CrossRef]

79. Wang, Z.; Guo, S.; Xie, Y.; Tong, Y.; Qi, W.; Wang, Z. Endometrial expression of ERRβ and ERRγ: Prognostic significance and
clinical correlations in severe endometriosis. Front. Endocrinol. 2024, 15, 1489097. [CrossRef]

80. Cheng, C.W.; Licence, D.; Cook, E.; Luo, F.; Arends, M.J.; Smith, S.K.; Print, C.G.; Charnock-Jones, D.S. Activation of mutated
K-ras in donor endometrial epithelium and stroma promotes lesion growth in an intact immunocompetent murine model of
endometriosis. J. Pathol. 2011, 224, 261–269. [CrossRef]

81. Maeda, D.; Shih, I.-M. Pathogenesis and the role of ARID1A mutation in endometriosis-related ovarian neoplasms. Adv. Anat.
Pathol. 2013, 20, 45–52. [CrossRef]

82. Steinbuch, S.C.; Lüß, A.M.; Eltrop, S.; Götte, M.; Kiesel, L. Endometriosis-Associated Ovarian Cancer: From Molecular Pathologies
to Clinical Relevance. Int. J. Mol. Sci. 2024, 25, 4306. [CrossRef]

83. Pan, Y.; Pan, C.; Zhang, C. Unraveling the complexity of follicular fluid: Insights into its composition, function, and clinical
implications. J. Ovarian Res. 2024, 17, 237. [CrossRef] [PubMed]

84. Wagner, M.; Hicks, C.; El-Omar, E.; Combes, V.; El-Assaad, F. The Critical Role of Host and Bacterial Extracellular Vesicles in
Endometriosis. Biomedicines 2024, 12, 2585. [CrossRef] [PubMed]

85. Duval, C.; Wyse, B.A.; Tsang, B.K.; Librach, C.L. Extracellular vesicles and their content in the context of polycystic ovarian
syndrome and endometriosis: A review. J. Ovarian Res. 2024, 17, 160. [CrossRef]

86. Nazri, H.M.; Imran, M.; Fischer, R.; Heilig, R.; Manek, S.; Dragovic, R.A.; Kessler, B.M.; Zondervan, K.T.; Tapmeier, T.T.; Becker,
C.M. Characterization of exosomes in peritoneal fluid of endometriosis patients. Fertil. Steril. 2020, 113, 364–373.e2. [CrossRef]

87. Björk, E.; Israelsson, P.; Nagaev, I.; Nagaeva, O.; Lundin, E.; Ottander, U.; Mincheva-Nilsson, L. Endometriotic Tissue-derived Ex-
osomes Downregulate NKG2D-mediated Cytotoxicity and Promote Apoptosis: Mechanisms for Survival of Ectopic Endometrial
Tissue in Endometriosis. J. Immunol. 2024, 213, 567–576. [CrossRef]

88. Ding, D.; Liu, X.; Duan, J.; Guo, S.W. Platelets are an unindicted culprit in the development of endometriosis: Clinical and
experimental evidence. Hum. Reprod. 2015, 30, 812–832. [CrossRef]

89. Bortot, B.; Di Florio, R.; Merighi, S.; Peacock, B.; Lees, R.; Valle, F.; Brucale, M.; Mangogna, A.; Di Lorenzo, G.; Romano, F.; et al.
Platelets as key cells in endometriosis patients: Insights from small extracellular vesicles in peritoneal fluid and endometriotic
lesions analysis. FASEB J. 2024, 38, e70267. [CrossRef]

https://doi.org/10.23736/S2724-606X.24.05631-8
https://doi.org/10.1210/er.2018-00242
https://doi.org/10.1016/j.jogoh.2021.102157
https://doi.org/10.3390/ijms241915001
https://doi.org/10.1007/s43032-022-00955-6
https://doi.org/10.1038/s42003-024-05898-z
https://doi.org/10.3389/fimmu.2023.1223828
https://doi.org/10.1016/j.fertnstert.2010.01.013
https://www.ncbi.nlm.nih.gov/pubmed/20188363
https://doi.org/10.3390/ijms24032901
https://www.ncbi.nlm.nih.gov/pubmed/36769226
https://doi.org/10.1093/humupd/dmae023
https://doi.org/10.12688/f1000research.152368.3
https://doi.org/10.1016/j.fertnstert.2017.09.017
https://doi.org/10.22074/cellj.2024.2022348.1503
https://doi.org/10.3389/fendo.2024.1489097
https://doi.org/10.1002/path.2852
https://doi.org/10.1097/PAP.0b013e31827bc24d
https://doi.org/10.3390/ijms25084306
https://doi.org/10.1186/s13048-024-01551-9
https://www.ncbi.nlm.nih.gov/pubmed/39593094
https://doi.org/10.3390/biomedicines12112585
https://www.ncbi.nlm.nih.gov/pubmed/39595151
https://doi.org/10.1186/s13048-024-01480-7
https://doi.org/10.1016/j.fertnstert.2019.09.032
https://doi.org/10.4049/jimmunol.2300781
https://doi.org/10.1093/humrep/dev025
https://doi.org/10.1096/fj.202402499R


Int. J. Mol. Sci. 2025, 26, 5193 30 of 45

90. Ding, S.; Lin, Q.; Zhu, T.; Li, T.; Zhu, L.; Wang, J.; Zhang, X. Is there a correlation between inflammatory markers and coagulation
parameters in women with advanced ovarian endometriosis? BMC Women’s Health 2019, 19, 169. [CrossRef]

91. Dantzler, M.D.; Miller, T.A.; Dougherty, M.W.; Quevedo, A. The Microbiome Landscape of Adenomyosis: A Systematic Review.
Reprod. Sci. 2025, 32, 251–260. [CrossRef]

92. Guo, W.; Xu, Z.; Hu, S.; Shen, Y. Exploring Microbial Signatures in Endometrial Tissues with Endometriosis. Int. Immunopharmacol.
2025, 148, 114072. [CrossRef]

93. Qin, R.; Tian, G.; Liu, J.; Cao, L. The gut microbiota and endometriosis: From pathogenesis to diagnosis and treatment. Front. Cell.
Infect. Microbiol. 2022, 12, 1069557. [CrossRef] [PubMed]

94. Escorcia Mora, P.; Valbuena, D.; Diez-Juan, A. The Role of the Gut Microbiota in Female Reproductive and Gynecological Health:
Insights into Endometrial Signaling Pathways. Life 2025, 15, 762. [CrossRef] [PubMed]

95. Hu, S.; Ding, Q.; Zhang, W.; Kang, M.; Ma, J.; Zhao, L. Gut microbial beta-glucuronidase: A vital regulator in female estrogen
metabolism. Gut Microbes 2023, 15, 2236749. [CrossRef]

96. Baker, J.M.; Al-Nakkash, L.; Herbst-Kralovetz, M.M. Estrogen-gut microbiome axis: Physiological and clinical implications.
Maturitas 2017, 103, 45–53. [CrossRef]

97. Chen, C.; Song, X.; Wei, W.; Zhong, H.; Dai, J.; Lan, Z.; Li, F.; Yu, X.; Feng, Q.; Wang, Z.; et al. The microbiota continuum along the
female reproductive tract and its relation to uterine-related diseases. Nat. Commun. 2017, 8, 875. [CrossRef]

98. Wei, W.; Zhang, X.; Tang, H.; Zeng, L.; Wu, R. Microbiota composition and distribution along the female reproductive tract of
women with endometriosis. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 15. [CrossRef]

99. Ata, B.; Yildiz, S.; Turkgeldi, E.; Brocal, V.P.; Dinleyici, E.C.; Moya, A.; Urman, B. The Endobiota Study: Comparison of Vaginal,
Cervical and Gut Microbiota Between Women with Stage 3/4 Endometriosis and Healthy Controls. Sci. Rep. 2019, 9, 2204.
[CrossRef]

100. Huang, L.; Liu, B.; Liu, Z.; Feng, W.; Liu, M.; Wang, Y.; Peng, D.; Fu, X.; Zhu, H.; Cui, Z.; et al. Gut Microbiota Exceeds Cervical
Microbiota for Early Diagnosis of Endometriosis. Front. Cell. Infect. Microbiol. 2021, 11, 788836. [CrossRef]

101. Svensson, A.; Brunkwall, L.; Roth, B.; Orho-Melander, M.; Ohlsson, B. Associations Between Endometriosis and Gut Microbiota.
Reprod. Sci. 2021, 28, 2367–2377. [CrossRef]

102. Shan, J.; Ni, Z.; Cheng, W.; Zhou, L.; Zhai, D.; Sun, S.; Yu, C. Gut microbiota imbalance and its correlations with hormone and
inflammatory factors in patients with stage 3/4 endometriosis. Arch. Gynecol. Obstet. 2021, 304, 1363–1373. [CrossRef]

103. Ye, H.; Tian, Y.; Yu, X.; Li, L.; Hou, M. Association Between Pelvic Inflammatory Disease and Risk of Endometriosis: A Systematic
Review and Meta-Analysis. J. Women’s Health 2024, 33, 73–79. [CrossRef] [PubMed]

104. Garmendia, J.V.; De Sanctis, C.V.; Hajdúch, M.; De Sanctis, J.B. Microbiota and Recurrent Pregnancy Loss (RPL); More than a
Simple Connection. Microorganisms 2024, 12, 1641. [CrossRef] [PubMed]

105. Sobstyl, A.; Chałupnik, A.; Mertowska, P.; Grywalska, E. How Do Microorganisms Influence the Development of Endometriosis?
Participation of Genital, Intestinal and Oral Microbiota in Metabolic Regulation and Immunopathogenesis of Endometriosis. Int.
J. Mol. Sci. 2023, 24, 10920. [CrossRef]

106. Leonardi, M.; Hicks, C.; El-Assaad, F.; El-Omar, E.; Condous, G. Endometriosis and the microbiome: A systematic review. BJOG
Int. J. Obstet. Gynaecol. 2020, 127, 239–249. [CrossRef]

107. Jimenez, N.; Norton, T.; Diadala, G.; Bell, E.; Valenti, M.; Farland, L.V.; Mahnert, N.; Herbst-Kralovetz, M.M. Vaginal and rectal
microbiome contribute to genital inflammation in chronic pelvic pain. BMC Med. 2024, 22, 283. [CrossRef]

108. Guo, C.; Zhang, C. Role of the gut microbiota in the pathogenesis of endometriosis: A review. Front. Microbiol. 2024, 15, 1363455.
[CrossRef]

109. Brubaker, S.W.; Bonham, K.S.; Zanoni, I.; Kagan, J.C. Innate immune pattern recognition: A cell biological perspective. Annu. Rev.
Immunol. 2015, 33, 257–290. [CrossRef]

110. Guo, B.; Chen, J.H.; Zhang, J.H.; Fang, Y.; Liu, X.J.; Zhang, J.; Zhu, H.Q.; Zhan, L. Pattern-recognition receptors in endometriosis:
A narrative review. Front. Immunol. 2023, 14, 1161606. [CrossRef]

111. Zhang, Q.; Yang, D.; Han, X.; Ren, Y.; Fan, Y.; Zhang, C.; Sun, L.; Ye, T.; Wang, Q.; Ban, Y.; et al. Alarmins and their pivotal role in
the pathogenesis of spontaneous abortion: Insights for therapeutic intervention. Eur. J. Med. Res. 2024, 29, 640. [CrossRef]

112. Chen, F.; Tang, H.; Cai, X.; Lin, J.; Kang, R.; Tang, D.; Liu, J. DAMPs in immunosenescence and cancer. Semin. Cancer Biol. 2024,
106–107, 123–142. [CrossRef]

113. Kobayashi, H.; Higashiura, Y.; Shigetomi, H.; Kajihara, H. Pathogenesis of endometriosis: The role of initial infection and
subsequent sterile inflammation (Review). Mol. Med. Rep. 2014, 9, 9–15. [CrossRef] [PubMed]
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212. Knez, J.; Kovačič, B.; Goropevšek, A. The role of regulatory T-cells in the development of endometriosis. Hum. Reprod. 2024, 39,
1367–1380. [CrossRef]

213. Riccio, L.G.C.; Baracat, E.C.; Chapron, C.; Batteux, F.; Abrão, M.S. The role of the B lymphocytes in endometriosis: A systematic
review. J. Reprod. Immunol. 2017, 123, 29–34. [CrossRef] [PubMed]

214. Kisovar, A.; Becker, C.M.; Granne, I.; Southcombe, J.H. The role of CD8+ T cells in endometriosis: A systematic review. Front.
Immunol. 2023, 14, 1225639. [CrossRef] [PubMed]

215. Chopyak, V.V.; Koval, H.D.; Havrylyuk, A.M.; Lishchuk-Yakymovych, K.A.; Potomkina, H.A.; Kurpisz, M.K. Immunopathogene-
sis of endometriosis—A novel look at an old problem. Cent. Eur. J. Immunol. 2022, 47, 109–116. [CrossRef]

216. Hanada, T.; Tsuji, S.; Nakayama, M.; Wakinoue, S.; Kasahara, K.; Kimura, F.; Mori, T.; Ogasawara, K.; Murakami, T. Suppressive
regulatory T cells and latent transforming growth factor-β-expressing macrophages are altered in the peritoneal fluid of patients
with endometriosis. Reprod. Biol. Endocrinol. 2018, 16, 9. [CrossRef]

217. Riccio, L.G.C.; Andres, M.P.; Dehó, I.Z.; Fontanari, G.O.; Abrão, M.S. Foxp3+CD39+CD73+ regulatory T-cells are decreased in the
peripheral blood of women with deep infiltrating endometriosis. Clinics 2024, 79, 100390. [CrossRef]

218. Li, M.Q.; Wang, Y.; Chang, K.K.; Meng, Y.H.; Liu, L.B.; Mei, J.; Wang, Y.; Wang, X.Q.; Jin, L.P.; Li, D.J. CD4+Foxp3+ regulatory T
cell differentiation mediated by endometrial stromal cell-derived TECK promotes the growth and invasion of endometriotic
lesions. Cell Death Dis. 2014, 5, e1436. [CrossRef]

219. Sisnett, D.J.; Zutautas, K.B.; Miller, J.E.; Lingegowda, H.; Ahn, S.H.; McCallion, A.; Bougie, O.; Lessey, B.A.; Tayade, C. The
Dysregulated IL-23/TH17 Axis in Endometriosis Pathophysiology. J. Immunol. 2024, 212, 1428–1441. [CrossRef]

220. Shi, J.; Xu, Q.; Yu, S.; Zhang, T. Perturbations of the endometrial immune microenvironment in endometriosis and adenomyosis:
Their impact on reproduction and pregnancy. Semin. Immunopathol. 2025, 47, 16. [CrossRef]

221. Olkowska-Truchanowicz, J.; Białoszewska, A.; Zwierzchowska, A.; Sztokfisz-Ignasiak, A.; Janiuk, I.; Dąbrowski, F.; Korczak-
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